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SECTION 1

SOFTWARE COMPONENTS OF A CPS

1.0 INTRODUCTION

It is tempting to recommend a single , simplistic approach
to the reduction of software costs , such as “higher level langu-
ages” , “modular software ” , “reentrant code” , “decision tables” ,
or some such other nonsense . Any such single minded panacea is
doomed to failure since it presumes that all the software compo-
nents of a communication system are similar and amenable to the
same kind of treatment. In fact , the software components of a
Communication Processing System (CPS) represent a diversity as
wide as the entire software field. One would not recommend
“decision tables” , say for equal application to the construction
of a matrix inversion program , a payroll program , and an oper-
ating system .

The point of view taken here is not to search for a non-
existent strategy (in the game theoretic sense) but for a mixed
strategy of manifold components , each applied in the proper
proportion to the particular kind of communication software
being written. The purpose of this section is to establish
software categories that are distinguished from the point of
view of the tools that are best suited to their construction .
The following categories are convenient :

(1) On-line , high execution probability software .

(2) On-line , low execution probability software . S

(3) Critical on—line software .

(4) Critical off—line software .

(5) Non—critical off-line software .

(6) Configuration generation software . -

(7) System performance monitor software .

(8) System analysis tools.

(9) Software development tools.

1.1 On-Line, High Execution Probability Software

What is actually meant here , is that software in which the
product of the probability of execution and the resources used
by the programs is a significan t fraction of the total resources
of the system. Such software , must , for the present , be pro-
grammed in machine language . Therefore , the emphasis must be on
creating common software and the use of software development
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tools that will alleviate the programming costs. Approximately
40~T—5O~ of the  o n — l i . n e  so f t w a r e  of a CPS f a l l s  i n t o  t h i s  cate-
gory . This comprises , perhaps , 25% of the total software as-
sociated with a communication system .

1.2 On-Line, Low Execution Probability Software

This is on—line software which , desp ite lar ge size , has a
low execut ion probability and does not there fore statistically
contr ibute significantly to the utilization of resources. Ex-
ample s of th is k ind of sof tware  are :

(1) Operator command interpretation and execution .

(2) Traff ic and system management functions.

(3) On—l ine table changes.

(4) On—l ine report generation.

Such so f tware  could , w i t h  l i t t l e  sacr i f ice , be wr it t en  in
a hi gher leve l language . In many systems , these programs are
surged , mean ing tha t  some degree of in e f f ic iency has already
been accepted . This category comprises some 30% to 40% of the
on-l ine programs .

1.3 Critical On—Line Software

This is software which may or may not have a high execution
probab i l i t y  or may or may not be s ta t ist ica l ly  sign i f icant , but
wh ich require a lot of timeliness when they are executed. Typ-
ical examples are :

(1) Emergency resources management (overflow). 
S

(2) System recovery funct ions.

( 3 ) T r a f f ic recovery .
(4) Other emergency processing modes.

These must be treated as the high probability on-line soft—
ware .  Perhaps 5~- to l0~ of the on—l ine software falls into this
category .

1.4 Critical 0ff—Line Sof t w a r e

This is a relatively small category . Off—line software ,
with critical timeliness requirements , should probably have
been rn~ chanized on—line.

1.5 N ii—Cr itical Off—Line Software

This is a grab bag of off— line software not discussed else-
where. It can and should be programmed in a higher level
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language .

1.6 C o n f i g u r a t i o n  G e n e r a t i o n  So f twa re

Ther e are two p r i m a r y  e l emen t s  to t h i s  group : t he  conf igu -
rator and the table generator. The confi gurator establishes the
prog ram parameter  values  for  the par t icular  si te , given the
c h a r a c t e rist ics of the  s i te hardware . I t  a l so  pe r f o r ms rou t ine
resource analysis to see to it that the site has what it re-
quires . The table generator is a form of a higher leve l langu-
age processor which takes the source table information and con-
verts it to the object tables. Both of these could and should
be mos t ly  si te inde pendent  and programmed in a h igher level
lan guage.

1.7 System Performance  Mon itor  Sof tware

Here , a distinction must be made between on-line perfor-
mance mon itor ing and performance mon itor ing unde r test cond it ions.
Sophisticated on—line performance monitoring cannot be done since
it tends to cut into the systems performance . That is , signifi-
cant art ifact is introduced if the performance monitor consumes
more than a small percentage of the resources . On-line perfor-
mance moni tors  would tend to be thorou ghly inte gra ted into  the
on-l ine high execution probability software . There fore , it
would be written in machine language and it is programming tools
that matter.

Test cond it ion performance mon itor tools can be a l lowed
more arti fact. However , since the programs bein g measured are
close to resources (in the sense that they manipulate and al-
locate resources) it is not likely that the uncertainty and
excessive processing introduced by a higher leve l language would
be tolerated. If the performance monitor tool is of a general
type (e.g. , a trace), then , since it will be written only once ,
the means by which it is constructed is not important.

1.8 System Analysis Tools

This category of programs need never be executed at the
s i te , either on or off—line. This software can be made com-
pletely independent and need never be rewritten. A higher level
lan guage wi l l  s u ff i c e  for  such tools.  Part of th e problem has
been that such tools have not always been available , or have had
to be wr itten from scratch for each application.

1.9 Software Development Tools

This is probably the most important category . All language
processors , traces , dumps , f l o w c h a r t e r s , library utilities ,
etc .  , are included in this area. Again , it is not how these
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programs are developed that matters , but the availability of
such programs in order to reduce the cost of developing the
operational and support software . This package is again appli-
cation independent and can be (but would not usually be) written
in a higher level language .

1.10 Summary

The first part of the grand strategy , then , that of
writing less software is directly applicable to the off—line
software , the support software , and the non—critical on—line
software , as well as the list of potential common routines.

The second part of the grand strategy , that of making
software easier to write , is applicable to the remainder and
the bulk of the on—line software .

2.0 SOFTWARE WRITING

2.1 General

Considering the entire software activity, from analysis to
coding , through testing , and maintenance , it is found that the
following strategies will contribute to making software easier
to write:

(1) Reduce source bugs.

(2) Find bugs faster.

(3) Localize the bugs when detected.

(4) Make inter—programmer communications easier .

(5) Make standards easier to define , follow , and enforce .

(6) Automatic analysis.

(7) Automate documentation .

(8) Automate test data generation .

(9) Automate test design .

(10) Automate testing.

(11) Make bugs easier to catch.

(12) Make it easier to patch.

(13) Reduce source bugs.

2.2 Available Tactics In Reducing Software Costs

The following tactics have been employed in the past to re-
duce software development costs. None of the items are wholly
new , but their interworking is. Furthermore , while these have
been around , they have not , generally, been available to the
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designers of switching systems , who for the most part have had
to work in a programming environment that has not , until recently,
changed significantly from the days of CONUS AUTODIN.

2.2.1 Higher Level Lan~uages

The usual way one starts off a discussion of the role of
higher level languages in communications , (or for that matter ,
in any other specialized application area), is with a long dia-
tribe on why the existing 358 languages are not suited to the
task . Having done this , it is followed up with a specification
of desirable technical features , which is in turn followed by a
formal syntactic definition of the language . What we have at the
end , is language 359, which will be partially implemented on an
experimental basis , but which will be largely ignored by the very
community it was intended to serve . This will be blamed on the
recalcitrance of programmers in general , poor presentation of the
language at the local computer conference , and most important ,
a bad implementation . A year later , another group , attacking
the same problem will make equally nasty comments about language
359 in order to justify the construction of language 360.

That ’s the way its been and there is no reason to believe
that this specification , (if it were to be done in the above
manner), would be singularly more successful . Why has it gone
this way in the past? It is, perhaps, that the wrong things have
been expected or that the wrong questions were asked. What should
be expected of a higher level language?

(1) Universality — its usage is widespread. It is an ac-
cepted language with lots of practitioners .

(2) The language lowers the programmer ’s training require-
ments , thereby increasing the base of available pro-
grammers.

(3) Simplifies the definition and manipulation of files .

(4) Simplifies the creation of reports.

(5) Simplifies the creation of algorithms and processes.

(6) Allows the construction of a library of structures.

(7) Takes care of other routine details.

(8) Checks source syntax errors - provides default values
for ambiguities in the source code .

(9) Is machine independent — transportable.
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While no one language has all of these features to the
desired degree , many languages do have most of these capabilities.
However , some languages are more suited to some areas than others .
The following list is instructive :

(1) COBOL — Report writing, file structures , universal ,
tape and disc I/O.

(2) FORTRAN - Universal , machine independent , processing
and algorithm building, large library .

(3) MARK-TV (Informatics proprietary program). Report
generator.

( 4 )  CODASYL DDL/DML - Not yet implemented , excellent data
structure definition and management. Fancy file
manipulation .

(5) PL— l - Probably the best all around compromise ,
lacking only universality and acceptance .

What it comes down to , is that if the object code inef-
ficiencies of higher level languages are accepted , there is
probably more to be gained by using existing popular languages ,
or modification s of them , than b.,’ attempting to promulgate a
specialized language whose usage will be even more restricted
than assembly language . Furthermore , it is probable that much
of what is gained out of a higher level language can be more
effectively obtained by other means - e.g., by a good assembler.
This is not to say that higher level languages have no place in
communications , but that the focus on higher level languages to
implement specialized functions may prevent the development of
other tools which could be more cost effective . It Is, perhaps ,
more advantageous to have these tools fully exploited first and
thereby gain more experience as to what might be desirable in a
higher level communication language , and also , to try using
existing languages for those functions to which they are suited .
Only then , if a new language is still required , go into its
construction.

2.2.2 Lower Level Languages

The assembler has been , for the most part , the orphan child
of the software package . Since most applications in a commercial
computer line are not programmed in assembly language , and since
most assembly language programmers are used to having it tough ,
assemblers have changed but little since the days of AUTOCODER
(UNIVAC-I). The assembler is probably the most neglected tool
in the programmer ’s kit bag . In many cases , it lacks even the
most primitive diagnostic facilities . The crudity of the as-
sembler is probably a major contributor to the fact that assembly
language programming is difficult. The following is a list of
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features deemed desirable in an assembler for communication
language software. Most of the features are not new or unique
and most of the features have appeared in one or more assemblers.
Unfortunately, the entire package , or something like it , has not
always been available.

(1) Assembler controls.

(2) Cross reference lists and their closures .

(3) Data element definitions and labels.
(4) Independently assembled subroutines.

(5) Macro call and macro define capabilities .

(6) Local and global labels.

(7) Subroutine call and definition .

(8) Generator call and definition .

(9) Absolute , relative , and relocatable addressing.

(10) Common .

(11) Integration with other software packages.

(12) Protection and restrictions specifications.

2.2.3 Flow Charter

2.2.3.1 General

A flow charter is a program which uses a combination of
source program syntax analysis and cues provided by the programmer ,
also as part of the source code and uses this information to pro-
duce a flow chart of the program . The flow charter is not infal-
lible and cannot represent everything that is coded , but for that
matter neither can a human flow charter. Flow charter programs
were originally produced primarily as an aid to documentation .
In man y cases, flow charters have been abused by using them to
generate the only flow charts ever produced for the project.
That is , the code is used to generate the flow charts rather than
vice versa. The true purpose of the flow charter is to maintain
the flow charts current with the inevitable modifications of the
programs . Initial design flow charts are produced as usual .
These are replaced when coding is done , by the flow chart pro-
duced by the flowcharter. As program modifications are made , the
flow charter is re—run . It eliminates or reduces discrepancies
between the code and the flow charts , and equally important ,
eliminates a discouraging period after the project is all over ,
in which programmer-s must spend many hours updating the final
documen tat ion .

2.2.3.2 General Facilities of Flow Charter

The flow charter considered for this software system is
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a package which is wholly integrated with the assembler , and in
fact , may be considered to be part of it. It is also integrated
with the timing analyzer and the test organizer described below .

A one—for—one flow charter is useless. It requires too
much effort on the part of the programmer and gives him an overly
detailed representation . In all , he would rather examine the
source code than look at that kind of flow chart. Therefore , a
many-for-one flow charter is needed . There is a basic question
in the design of a flow charter - how smart should it be. In
higher level languages , because of the rigid syntax and stratifi-
cation of the language , it is possible to build reasonably smart
flow charters which require very little in the way of cues from
the programmer. However , in assembly language , in which indexed ,
indirect operations , execute instructions , and other forms of
address modification can take place, It is impossible to guarantee
the development of the proper flow on the basis of the source
code alone. It is never really clear where a jump is going to ,
and in fact , many of the processes as coded cannot be represented
directly in a flow chart form. Accordingly, the overwhelming
majority of the direction of the flow to the flow charter should
be given by the programmer. The following facilities are deemed
desirable.

(1)  Two levels of flow charting specifiable — detailed
and general .

(2) Definition of processes that span more than one
instruction , or possibly jump instructions as well.

(3) Option to automatically include all macro , sub-
routine , and generator calls (one level only), or
to delete such calls and imbed them within a pro—
cess , if desired.

(4) Insertion of all labels which are targets of jump
instruct ions.

(5) Ability to define and flow chart jump tables .

(6) Automatic generation of page connectors.

2.2.3.3 Integration with Other Packages

The flow charter outputs include diagnostic in format ion
regarding the topology of the program not available from assem-
bler outputs  alone . In addition , the f low charter can be used to
produce a representation of the program based on connected nodes
and spanning links — that is , a graph theoretic description of
the program. This output is extremely useful. It forms the
basis for automating a timing analysis model and is also the
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basis for a model which  wi l l  be used by the test data generation
package .

2.2.4 Structural Test Generator

2.2.4.1 Definition of Structural Test Generator

A distinction Is made between two kinds of tests —

structural and functional. In a structural test , the emphasis
is on the program and its logic , but not on what it does in terms
of switching functions. In a functional test , the emphasis is
completely func t iona l , and is independent of the way the program
has been implemented. While there is a degree of overlap between
these two , there are enough differences to warrant different ap-
proaches. Structural testing is that which is mostly done by the
programmers. Functional testing is that which is mostly done by
the end user - e.g. , an acceptance test .

2.2.4.2 Definition of 100% Testing

The universal employment of 100% testing is advocated .
What this means is that every instruction in the program will
have been executed at least once , and that every conditional
branch wil l  have been t aken at least once in every possible
direction . Given the topological description of the program ,
that  is , its f low chart , obta ining a minimum sized 100% test is
a straight-forward task. The process begins at the program en-
trance and finds the shortest path to the exit. Any decisions
along the way are noted and data must be prepared that will con-
dition the decision so triat the indicated path is taken . It then
starts again at the entrance and f inds  the next shortest path.
Some of the data on this  path may coincide wi th  data of the pre-
vious path , so that only that information required to condition
the decisions to the  new path must be provided. The process is
continued in this  manner , t racing paths and supplying condit ioning
data and output information , unt il every instruct ion in the pro-
gram has been accounted for.

This is substantially the procedure used today in the
design of large scale real—time systems. However , in practice ,
paths are missed , redundan t testing is done an d good records are
not kept.

2 . 2 . 4 . 3  Extent of E f fo r t  Required

It can be shown tha t testing comprises approx imately
50% of the e f fo r t . Consider now two aspects of t e s t ing ;  set t ing
up the tests (phase 1) and executing the test , f i nding the bugs ,
correcting them , and r e—runn ing  the test (phase 2 ) .  It is found
that  phase 1 comprises , in general , some 75% of the tes t e f fo r t ,
while  phase 2 requires 25% of the e f fo r t . The e f f o r t  then ,
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should be on the generation of the tests and not the execution
and removal of bugs .

2.2.4.4 Automation of Structural Testing

The topological model output produced as a by-product
of the flow charter contains all the information required to
trace and sensitize test paths . The process of extracting the
test data and the predicted results can be automated through an
interact ive program . Set t ing up test run f i l es  and comparison
of output data can be automated completely. In addition , the
ma intenance of the test data f i l e s , and the ed i t ing  thereof re-
quire facilities already present in most commercial time-sharing
systems.

2 . 2 . 4 . 5 The Structural  Test Package in Operation

The completion of assembly for a given un i t  and the
generat ion of the flow chart is the point at which the structura l
test package can be invoked . The uni t  is examined to determine
all required precondition data. That is , that  data which is con-
tained in the calling sequence or in common , which must be speci-
fied for the program to be run. The first sensitized path is
chosen and the flow chart comments associated with the decisions
on that  pat h are pr in ted out , along with a request to specify
the variable names for which values must be given . A check is
made to see if all unbounde d variables have been bound . Values
for all inputs are requested and a f i l e  is constructed for  the
input  values. A request is made for names of output variables
and the values which are to be associated wi th  the given test.
However , for the next test , a new f i l e  is created and only those
input values which have changed as a result of the new test path
are requested . Similarly , another output f i l e  is created. As
the test generation continues , less and less explici t  inputs are
required since more and more parameters and values are carried
over from previous tests. When the entire set of paths have been
traced , the test specification phase has been f in i shed .

The user can then cal l for an automat ic run or can
direct the test system to a part icular  test.  During an automatic
run , each test wi l l  be performed in sequence , using the appro-
priate data file. Any discrepancy between the supplied output
and the actual output will indicate a test failure and cause a
hold.  The programmer can then either cont inue wi th  the  sequence ,
rerun the test , obtain other outputs, edit the program , etc.
Af te r  a round of debugging, using trace f ac i l i t i e s  or whatever
is appropriate , the ent i re  test sequence can be rerun . Simple

4 checks are made to see to It that  the topology has not changed.
If  it has , part of the test generation procedure mus t be redone.
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2 . 2 . 4 . 6  Advantages

The primary advantage is a guarantee of 100% testing.
But , there are additional advantages which cannot be obtained
without such a package . Typically , today even when 100% testing
is used , a f t e r  a bug is found , the en t i re  test procedure is not
rerun from the top. While this can often be done with safety,
no small number of bugs remain which could have been caught had
the entire test been rerun . This is particularly the case with
the integration of several units , where it is too costly to go
back to the lower levels even though a change has been made in
the unit as a result of a detected interunit bug . Automation of
testing and test design will allow the complete rerun to be per-
formed. The net effect would be not only to substantially reduce
the effort required to perform the level of testing being done
today , but to significantly improve that level as well , at little
or no additional human cost.

2.2.5 Functional Test Package

2.2.5.1 General

The functional test package is used to generate the core
of a formal acceptance test. The point of view here, unlike that
of the structural test package which is internal (based on the
flow chart topology) and is heavily implementation dependent , the
functional test is external , functionally oriented , and for the
most part , is implementation independent. There is no single ,
comprehensive package that can be used to generate the numerous
functional tests which comprise a complete system shakedown .
There are , however , a number of areas in which the labor content
of specifying and executing a comprehensive functional test can
be significantly reduced .

2.2.5.2 Scope of Functional Testing

Functional testing, as distinct from unit testing and
system testing, is epitomized when done by a formal acceptance
test . Acceptance test plans and their execution , for a typical
switching system require several man years of effort. A simple
commercial switching system test plan could be devised in less
than a man year . The total labor content (including vendor ,
programmers , eva luators , rev iews , etc.), for the design , review ,
and execution of a formal acceptance test plan , for a large
scale military system, is of the order of 10 to 15 man years.
Often , this effort is so diffused among designers , evaluators,
installers , or carried as part of design or monitoring, that it
is difficult to pin the expenses down . In any case , it is a
large item worthy of some investment to reduce labor costs.

2.2.5.3 Component Elements
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2.2.5.3.1 Format Generator

No small part of message switch processing is con-
cerned with checking and converting formats. There are the ob-
vious header formats and routing indicator formats. However ,
there are other formats  tha t  are not usually recognized as such ,
but nevertheless require extensive programming. These include
operator commands , t r a f f i c  service commands , table generator
input formats , retrieval requests and the like . Two cases must
be considered in setting up the test for formats — val id  and in--
valid cases. The system must pass and properly execute action
on the receipt of valid messages and commands. Similarly, the
system must reject and/or correct or properly dispose of errored
formats. In all , the format tests (both valid and invalid) while
being the easiest part of the test to write , are the most labor-
ious and time-consuming. Almost half of the documentation and
the executed tests consist of format related tests.

A format generator , given the formal syntactic rules
that  def ine  a format , would generate character s tr ings corre-
sponding to every valid format combination , and character strings
corresponding to the most likely invalid formats. Since the
invalid formats are infinite in number , only a restricted set can
be produced. Every single error should be generated. If the
format generator is available , it should be possible to go on to
the analysis of error pairs wi th in  the same format .

Most of these same arguments and comments hold for
classmark generation and checking in circuit  swi tching systems .
For this reason , a classmark generator is recommended as well.

2 . 2 . 5 . 3 . 2  T ra f f i c  Generator

There are three generic conditions or kinds of t r a f f i c
which must be generated in a test; test traffic , background
t r a f f i c , and load.

Test t r a f f i c  is used to test specific capabili t ies of
the system . In general , test traffic is peculiar to the system
and mus t be hand—craf t ed .  I t  is a lot of t r a f f i c , but since the
bulk of the e f f o r t  is deciding what traffic is to be run , the
opportuni t ies  for automation are minimal .

Background t r a f f i c  is t r a f f i c  which is kept runn ing
throughout the test. The in tent  of background t r a f f i c  is to show
that  the system performs its funct ions  while  simultaneously run-
ning a background of representative t r a f f i c .  This is not a dif-
ficult set of traffic to devise and would not benefit signifi-
cantly from automation.

Load t r a f f i c  is used to del iberately attempt to break
the system down : or , at least , to test the system ’s defenses
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against higher than design loads . In general , this is a large
amount of representat ive t r a f f i c , which should and could be auto-
mated. Running the same message or set of calls through is not
sa fe .  Each message or call  must be s e l f — i d e n t i f y i n g  and un ique :
otherwise , lost t r a f f i c , garbled t r a f f i c , and the like wi l l  not
be readi ly  i d e n t i f i e d . The s ig n i f i c a n t  ident i f y i n g  data is
usually carried in the text of the message or in the distinction
of the ca l l .  The load t r a f f i c  generator would produce coded
sources of t r a f f i c  in the desired quan t i t i e s , in a form suitable
for  in t roduct ion into the switch .

2.2.5.3.3 Traffic Simulator

Much of the system cannot be tested without  a simulator
that is used to present valid and errored traffic to the system .
Consider the problem of tes t ing a channel  coordinat ion procedure .
A pair  of lines are cross—patched and t r a f f i c  is introduced , say
from a retrieval file or an intercept file. The message goes
through properly , supposedly proving the validity of the pro-
cedure . All that this has proved is that the right hand of the
procedure knew what the lef t  hand of the procedure was doing.
It does not prove the validity of the procedure , only its self-
consistency .

As a step up in proving a channel coordination pro-
cedure , live testing might be used with an already proven user
of that  procedure. The messages go out in both direct ions and
are received without error. We have proven the normal path of
the procedure , but not the tougher and fa r  larger set of error
condition paths . To test these , errored traffic or errored re-
sponses must be simulated to the procedure. Since the other side
of the in ter face  is that  of a working system , forc ing  it to
create errored responses w i l l  require a patch - something that
the operators of a working system are highly  re luctant  to do. A
traffic simulator could do this job.

The problem of providing a proper load to a switching
system has also always been a problem . Most o f ten  i t  has been
done by some kind of cross—patching or loop—patching of inputs
in to  outputs .  While  th is  creates a load , i t .  is unreal is t ic .
The load tends to be synchronized ; th is  is a s ta t is t ica l ly  harsh
situation which often requires program patches to correct (de-
creasing the reality of the test). Input and output cannot be
balanced as in a real situation , or else overflow will quickly
resul t .  Errored t r a f f i c  cannot be sent or created.

For these reasons , a t r a f f i c  simulator can be an ef-
fective tool in performing system functional testing. The simu—
lator does not require addit ional  or d i f f e r en t  hardware . It can
typica l ly  be run in a minimal  configurat ion of the same hardware
being used to implement the switch. The simulator does not re-
quire the same elaborate accountability and protection features.
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Furthermore , recovery from hardware faults is not necessary . The
simulator , then becomes a software package to be implemented
using the switching hardware .

2.2.5.3.4 Test Administration Package

No small part of the effort involved in producing a
comprehensive , formal acceptance test , is the generation of a
formal acceptance test plan . The test plan contains the complete
documentation of the tests , indicating the nature of the test , a
narrative description thereof , a complete specification of input
traffic , operator actions , scenario components , etc., and a com-
plete specification of every aspect of the system ’s behavior in
response to the test , expected outputs , etc. Also included in
the test plan are various message cross reference indexes , line
indexes , test tables , call tables , etc. In all , the test plan
document is of the order of 1500 to 3000 pages of text. Ap-
proximately 30% of the total manpower involved in creating this
test is the administration and correction of the test plan docu-
ment. Long before the formal test has been run , the test plan
has been executed , piece by piece , in a series of dry runs .  The
test plan is as complex as any piece of software and must also

- be debugged. Most of the bugs that  wil l  be caught through the
formal  runn ing  of the test are caught as a result  of des igning
the test and d r y — r u n n i n g  i t .  Errors f a l l  in to  the  fo l lowing
categories :

(1) Errors in the specification. The specification
will be corrected , the programs changed , and
the acceptance test plan modified.

(2) Errors and doctrinal misunderstandings in the
operation of the system . The manuals will be
clarified , the test plan narratives will be ex-
panded.

(3 )  Program bugs. The bugs w i l l  be corrected , the
test plan may be modified as a resu1t.

(4) Test plan errors of unders tanding.  That is ,
testing of a non—existent feature. The test
pla n w i l l  be modi f i ed .

(5) Doctr inal  errors in the execution of the test
plan . Test plan documentat ion w i l l  be revised.

(6) Test table bugs. Test tables will be modified ,
test plan documentation will be modified.

It is found that the test plan documentation is sub-
ject to as much , if not more , modification than is the system
documentation . If that documentation were maintained on—line
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and could be edited by the originator of the change , much as pro-
grams are edited under the general documentation package (see
below), a considerable amount of man power could be saved.

2.2.6 Model Builder Package

2.2.6.1 General

The continual development of new computer controlled
communication systems , and the continual enhancement of existing
systems implies , in addition to new code , new analyses of per-
formance . This is an ongoing activity which is usually thoroughly
integrated with the design and development activity. Comprehen-
sive models of systems have not generally been done in the past.
When done , they have generally been done from scratch for each
new project , independent of the analytical effort that may have
taken place on a similar or almost identical system based on the
same machine. The problem is the same for the analytical area
as it is for the software area. That is , the same barriers that
exist to common software are operative in preventing common
analytical efforts. Given modular software and given a solution
to the software commonality problem , the possibility of common
analysis emerges.

The thrust of the analytical approach proposed here , is
to eliminate the bulk of it by creating a model building and
maintenance facility, which is totally integrated into the soft-
ware development activity so that common software will automati-
cally result in common models for that software .

2.2.6.2 Use of the Model

An analytical model , if sufficiently comprehensive , is
an indispensible management tool for deploying multiple systems
based on the same hardware and software. Assume that a hardware!
software package of the proper type has been created and the
relatively mundane problem of doing site surveys and implementa-
tion of , say , a hundred sites must be performed. No two sites
are alike . The traffic picture is different , the line structure
is different , and the mix of operational requirements differ ,
even if the software is identical. Furthermore , it is not likely
that all special features will be eliminated by fiat — it can be
expected that certain minor differences from site to site , or
from user agency to user agency , will, exist .

The analytical problem to be faced is that of deter-
mining what resources are required to handle the traffic at each
of a hundred sites . That is , how much core , how much mass
memory , what channels , devices , etc.- It is desirable to obtain
a working configuration which neither over—buys nor is exces-
sively restricted in terms of future growth. A typical analysis
of the type required entails an effort of some two man years .
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The i n d i v i d u a l s  i n v o l v e d  mus t  be thoroughly familiar with the
detai ls of the hardware , t h e software and the application : in
sho r t , t h e y  mus t have  been part of the ori ginal design team .
T h i s  is the  way i t  is done t r a d i t i o n a l l y .

It  is t o t a l l y  u n r e a l i s t i c  to assume t h a t  i t  w i l l  be
possible to obtain and maintain a staff sufficient to the purpose .
Anal ytical automation is essential. That automation is most
read ily provided in the form of a comprehensive mathematical
model , or rather , a l ibrary  of mode l compon en ts wh i ch can be
integrated , optimized , etc . , before deployment so as to obtain
an effectual system . This is the predominant Use of the mathe-
matical model.

The secondary  use of the model is in the management  of
i nd iv idual  sites to determ ine the best wa y in wh ich to meet the
predi cted or actual traffic growth. The traffic processed by the
opera t i onal  s i t e is usua l ly  sign ificantly different from the
traffic predicted for it. Furthermore , as the system is used in
t he f i e l d , the or igi nal  t r a f f ic pred ictions are seen to become
less and less realistic. The site manager must also be able to
plan his resource expansion requirements. The analytical talent
and know how is not ava i lable to h im , except throu gh the use of
a centrally administered comprehensive mathematical model facil-
ity. It is expected that each site will update its traffic pro-
jections at least on a semi—annual basis , and to obta in the re-
source requirements projections that often. Again , this would
represent an incomprehensible burden if not automated.

The third use of the comprehensive mode l is in the de-
vel opment  phas~ be i t  the original development or a subsequent
enhan cement. ~ts use is no less c r i t i c a l  t h e r e  — in fac t it is
there that the basic decisions on system behavior are made — i f
those decisions are wrong , or if a trade—off has been overlooked ,
or bypassed because it was too complex to evaluate manually, the
resulting systems may all be operating at less than potential
ef f i i ency . An i n t e gra ted , comprehens ive mathematical model is
an ind ispenslhlc’ aid to development.

The finaJ use of the comprehensive model is the  role i t
can play in high level planning for a network or a communication
a g e n c y .  Changes i n fo rmat s , changes in traffic patterns , changes
in the sc en a r i o s  fo r  w h i c h  the  system was b u i l t , t e s t i n g  of hypo-
t h e t i c a l  scen a r i o s  as a p a r t  of a l a rger  scale m i l i t a r y  p l a n n i n g
ex e rc i s e , are a l l  r e f l e c t e d  in changes in the  t r a f f i c  and load
w h i c h  t he  systems w i l l  have to h a n d l e .  W h i l e  i t  is not p r ac t i c a l
to i n c l u d e  a d e t a i l e d  m a t h e m a t i c a l  model of a communica t ions
computer complex in a network model or in a h igher  level model ,
such as a war-games mo~lel , the mathematical model of the switch
can he used to develop a summary behavorial mathematical model
wh ich could he incorporated into a larger scale mode l or simula—
t I on.
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2.2.6.3 Building the Mode l

It is not the building of the overall model t ha t  is the
problem but the  m o d e l i n g  of i t s  component p a r t s .  Most of the
a n a l y t i c a l  e f f o r t  invo lved  in c o n st r u c t i n g  a proper m a t h e m a t i c a l
model can be au tomated  and complete ly  i n t e g r a t e d  i n t o  the  design
process . The pr imary  tool fo r  t h is  is seen as an ex t ens ion  of
the  a s s e m b l e r/ f l o w  c h a r t e r/ t e s t  genera to r , r e s u l t i n g  in  a new
package , the  a s semb le r/ f l ow  c h a r t e r/ t e s t  gene ra to r/mode l b u i l d e r .

The topological  ou tpu t s  of t he  f l o w  cha r t e r , when coupled
w i t h  the in fo rmat ion  re ta ined in the  s t ruc tu ra l  test generator ,
are the  ou tpu ts  required to cons t ruc t  a m at h e m a t i c a l  model of
every s u b r o u t i n e , subprogram , e tc .  , i n  the  system . The assembly
code a l lows precise t i m i n g s  to be made a u t o m a t i c a l l y .  A special-
ized s o f t w a r e  program could be used to provide a complete alge-
braic model of any subroutine or program , automatically and
w i t h o u t  human i n t e r v e n t i o n.  Such a mode l would be an a lgebra ic
expression in the probabilities associated with the various
decisions. These would be the components with which the mathe-
matical models for the site would be constructed. The same kind
of facilities that would be used to assemble the component sub-
routines into a working software package would , in parallel , be
able to assemble the component algebraic models into a complete
algebraic model of the system . An interactive system , such as
GASM (see Volume III), expanded somewhat , and run in a non-
interpretative mode , could be used to particularize the algebraic
models. Human inputs would still be required for some of the
probabilities , specification of traffic , etc. However , there
are no fundamental problems in the creation of a model builder
facility or the subsequent creation of particular models using
t h a t  f a c i l i t y .

An expanded mode l manipula tor  per forming  the same kinds
of t h ings  done by GASM does not represent any significant expan-
sion .

The tie between the assembler/flow charter/test generator
and the specialized software does not represent fundamental prob-
lems. Similarly , the tie between the specialized algebraic pro-
gram and GASM is straightforward . It should also be pointed out
that the algorithms required to find the shortest paths , etc.,
for the test generator would be part and parcel of the special-
ized program .

2.2.7 TarKet Machine Simulator

2.2.7.1 Reason for a Simulator

There are many advantages to doing initial testing ,
particularly at the unit level in a simulator of the target
machine , rather than in a real target machine. A simulator can
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be in tegra ted  w i t h  pe r fo rmance  m o n i t o r i n g  and measurement sof tware
without introducing artifact. A simulator , running interpreta-
tively, allows elaborate traces and traps to be implemented , which
can be cumbersome or misleading in a real system . Most important ,
a simulator of the target machine is stratified in that one can
operate at the simulation leve l with the assurance that there is
no possible bug which will work in such a way as to deny the pro-
grammer the use of the det~wgging tools. In a real system , on the
other hand , a bug could clobber the trace package , for example ,
making the finding of the bug difficult. The final and probably
most important advantage of the simulator is that it can be
incorporated into a time-sharing system , allowing multiple users
to test programs simultaneously without fear of interaction.

2.2.7.2 Use of the Simulator

The simulator would be used for all initial assemblies
and unit testing. If the simulator is large enough to incorporate
the characteristics of the various peripheral devices , then
testing could be done under simulation , up to the integration
of a complete system . This would be very desirable. Successful
running in the simulated mode does not guarantee that the system
will run properly on the real test machine or the target machine.
However , if it does not run successfully and pass all tests on
the simulator , then it will surely not run on the real thing.

The simulator would also be used in conjunction with
testing on the real system . In fact , a simulator access console
would be available to the programmer right next to the real
systems console during debugging. Assume that a bug has been
detected. It is much easier to establish the conditions that led
to the bug , to probe the cause , and to test possible fixes on
a s imula to r , or w i th  a s imulator along side . For example , the
act of probing on the real system can cause interference with
the situation that exists in the real system ; e.g. , the bug is
such that it affects or is affected or masked by the introduction
of a trace or dump program. It would be easier to simulate the
effee ts of the bug on the simulator where things can be tried
over and over again without information loss , prior to doing the
same thing on the real system .

2.2. 8 Configuration Generator/Specifier

The configuration generator ’s primary function is to esta-
blish the values of assembly time parameters and tuning parameters
required to particularize the system to the specified site. It
is a SYSGEN package and , in principle , not new . This kind of
package , which reduces much of the effort required to particu—
larize a program to a site is most often done as an add-hoc thing ,
rarely designed from the ground up, and often totally lacking.
There are many instances in which the particularization of the
program parameters to a given site has been done by hand ,
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resulting in a whole new set of bugs. While mechanical configur-
ation generation will not eliminate all manual operations , it
will , at least , assure that the particularization is complete
and consistent.

The configuration generator is also needed on site. It
must be used every time there has been a hardware change . It
would also be used for line configuration changes and tuning
parameter value changes that are required to best match the system
to the  t r a f f i c .

2 . 2 .9  Table Generator

Switching systems , when properly designed , are table
driven to the maximum feasible extent . The source tables may
require from 20,000 to 300,000 statements. Every bit of the
permanent tables must be specified. These include line para-
meter tables , classmark tables , routing tables , special delivery
instructions , security data , priority information , accountability,
and a host of internal parameter values. In some more advanced
systems , table driven channel coordination procedures , table
driven routing procedures , as well as other table driven func-
tions are found , which are normally done in code.

The setting up and testing of the tables is no small part
of the programming effort , though not usually done by the soft—
ware developer. Most often , it is done by the user organization
in con junc t ion  with the software developer. In any event , speci-
fying the tables is a programming activity . As an example of
the extremes to which this can go , it is estimated that the labor
required to set up the tables for the IBM-PARS reservation system
is of the order of 40 man years. An expenditure of three to four
man years for s e t t i ng  up the tables of a large switch is not un-
usua l .

What is unusual  is that  we ask the  table programmers to do
the job in octal , or b ina ry , or a haphazard mix ture  of octal , hex ,
bi nary , an d ASCII . If  lucky , the system wi l l  be provided with
a table generator language comparable in terms of facilities
such as listings and diagnostics to a relatively primitive as-
sembler. Furthermore , the table generator source code , when a
language has been devised , is unique to that system and bears no
re la t ion  to any other system or the method used to introduce the
tables . Th i s  is an abominable s ta te  of a f f a i r s .

Much of the source code of the tables could be made machine
independent and be executed in a higher  level source language
w i t h o u t  pena l ty  at the object level . The tables should not be
t reated as if  they are data , but should be t reated for the code
tha t  they indeed are. What is needed then , is to def ine  and
develop a h igher  level table speci f ica t ion  language w i t h  suf-
ficient freedom to define the tables in the first place , and to
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s i ’ e c i f y  t h e  i n p u t  f o r m a t s  where special fo rmats  must  be devised.

The i n t e n t i o n  i s  to create  a source language that would
t ake  ca re of t h e  r ou t i ne  k i n d  of t h ings  in a standard , site in-
dependent m a n n e r .  The a b i l i t y  to do t h i s  w o u l d  s i g n i f i c a n t l y
reduce t r a i n i n g  costs  for site personnel.

3.0 A NEW MODEL TOOL KIT  FOR PROG RAM DEVELOPMENT

3.1 Software_P~~~~~ective 
-

I f  a t r u l y  homogeneous f a m i l y  of communicat ions systems is
des i red , based as much as possible  on common so f tware , an d a
c mmofl a r c h i t ec t u r e  that  is to be used over a wide range of appli-
c a t i o n s , i t  is c l ea r  t h a t  a comprehensive support and development
s o f t w a re  package w i l l  have to be developed that is no smaller
in  scope to t h e  k i n d s  of s o f t w a r e  l i b r a r i e s  developed for  a com-
m e rc ia l  f a m i l y  of machin es . By no means should t h i s  be inter-
p r et e d  to mean t h a t  a commercial software package is what  is
needed. I f  the above allegation is accepted , and the intention
to reduce the tota1 life-cycle cost of software development and
m a i n ten a n c e  t o  be associated with the CPS is pursued , it will be
f o u n d  t h a t . t h e  b a s i c  s o f t w a r e  package , e x c lu d i n g  t he  s o — c a l l e d
applicati en packages , exceed the  e n g i ne e r i n g  e f f o r t  r e q u i r ed  for
t h e  h a r d w a r e  dev elop m e n t .  T h i s  should not be s u r p r i s i n g  since
t h i s  has a lways been the  case for commercial systems of compar-
able complexity.

Recogn i ze t h a t  s o f t w a r e  cos ts  a re  i n c re a s i n g ,  t h a t  engi—
net r i n g  costs are c o n t i n u a l l y  be ing  moved from hardware  areas to
s o f t w a r e  a r e a -~ and , w i t h  i t , basic ’ s o f t w a re  costs wi l l similarly
increase to ov er t ak ~ in it ial hardware engineering costs. W h i l e
s o f t w a re cos ts  cannot  he el imi n u t  ~~~ t h er e  i s  a m p le  room f o r  t he
significant reduction in labor content . cigh the constiuction
of m o d u l a r  so f t w a r e , t h~ - a u t om a t  ion  ot  ~~ o~ e l e m en t  s of p rogram
developme nt , and th rough  the p r o v i s i o n  of f a c i l i t i e s  comparable
i n scope , bu t spec i  f l  c to the  CPS needs , t h a t  h a v e  lo ng been
enjoyed by the commercial programme r . Real-time systems pro-
gramming may he d i f f i c u l t , bu t  t he re  is no need t o  make i t  any
more so than  i t  has to be.

3.2 Genera l  Features  of a Comp rehensive Software Development
Oper a t i n g  System ( COMSDOS)

H a v i n g  seen the  ran g e  of packages and s o f t w a re  e lements  t h a t
ex i st  or shou ld  be develop ed in support of a complete communica-
ti on system design and operations activity, i t  is obvious tha t
the integration and interworklng of such a package requires some-
thing like an operating system . Furthermore , it is seen that
much emphasis has been placed on doing things on—line via remote
t e r m i n a l s .  In other words , the  opera t ing  system in  ques t ion  is
a ime—sharing operating system .
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Such a system would have many of the fea tures  commonly found
in a commercia l  t i m e — s h a r i n g  system . I t  would d i f f e r  p r i m a r i l y
in  the  f a c t  t ha t  there  would be a closer i n t e g r a t i o n  of the
various component packages, elimination of much of the clumsiness
now required to go from package to package , and the inclusion of
a number of spec ia l ized  f i l e  s t ruc tures  su i tab le  to the  r e s t r i c t ed
purposes of the software development effort.

Exactly what facilities are required , how they should be
best integrated , how they should interface with the programmer ,
how they should be implemented , on what machine , etc., cannot be
answered now . Experience has shown that many of the important
requirements are recognized only after people start to use the
system , by which time it is too late to go back and change things .
A valid approach to solving this problem would be to build an
initial version (admitedly inefficient) over an existing time-
sharing operating system , such as that of the DEC PDP-lO or the
HIS—6050. A test bed could be devised within which the efficiency
of various approaches to communication system software develop-
ment could be examined. Successful operation of the test system
for a few projects would identify what features the dedicated
COMSDOS should have. Many of the component elements could be
constructed and evaluated on existing time—sharing systems as
applied to any large scale real—time software development effort.
This could be done without prejudice long before the CPS and its
software package became available.

3.3 Component Elements

(1) Assembler , new model

(2) Flow charter

(3) Structural test generator

(4) Functional test package :

Format generator

Classmark generator

Traffic generator

Table generator

Traffic simulator

Test administration package

(5) Model builder/analyzer

(6) Target machine simulator

(7) Utility package

Dumps
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Converters
Traces

Editors

Test point
Loaders

(9) Performance monitors

(10) Hardware diagnostics

And an operating system/file management system that puts the
whole thing on-line in an integrated manner so that it is reason-
ably easy to use.

3.4 Pre-Reguisites

(~~) Stable hardware

(2) Willingness to accept performance or functional compro-
mises in the interest of reducing software costs .

(3) Funding of modular software as an effort of its own -

rather than expecting it to come into being as a f a l l -
out of a specific project.

( 4 )  A large number of conf igurat ions  of comparable types
over which the modular software and the software
building tools can be amortized .

(5) Planning and construction of the entire package as a
self-consistent entity rather than following the clas-
sical historical piece constructions of the past .

3.5 Conclusions

Software costs can be significantly reduced given stable
hardware by increasing the amount of modular software. This
implies an acknowledgement of the fact that modular software can-
not be developed within the context of any one system but must
be funded as a separate project whose objective is to create
modular software to be used on all projects.

Software costs can be significantly decreased by taking as-
sembly language programming out of the dark ages by providing
reasonable tools , which have , for the most part , been denied to
the assembler programmer.
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3.6 Recommendat ions

(I) Establish a study to consider , in further detail , what
the mix of software development tools should be. The
objective would be to provide sufficien t detail to
allow an imp lementation on a trial basis.

(2) Implement the major elements of the programming tool
kit as interpretative programs on a time-sharing system
and test it in use in the development of a small , but
representative communication system . Revise the speci-
fications for the final package in the light of what
has been learned. This should be done in parallel with
the CPS hardware studies so that time is not lost.

a. Consideration should be given to implementing por-
tions of the package which are theoretically feas-
ible , relatively independent of the entire package,
but which still require operational testing.

(3) Integration of the package and rewriting thereof for
implementation in the CPS computer for a CPS software
effort - e.g., creation of the basic modular software
to be used in the CPS based system .
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4 .0  SYSTEM GENERATION

The capability to identify, select , and configure Circuit
Switch and Message Switch software across varied physical and
functional arrangements was investigated. Recognition of the
desirability and usefulness is easily obtained , but can instantly
be matched by awareness of the complexity of such an undertaking.

It was, therefore, the intent of this investigation to un-
cover and itemize basic criteria which would have to be addressed
during such an endeavor . An attempt is made to uncover the
salient problems which would be encountered , and to arrive at
some corresponding solutions. Detailed imp lementation character-
istics and practices are left to the planning and construction
phase of the System Generation facility.

While the purpose of this investigation is directly related
to the construction of Circuit and Message Switching systems , it
is not envisaged that the concepts presented here preclude their
use elsewhere. This premise is made based upon the assumption
that many large systems are constructed in a manner similar to
the systems in question , and that they possess the same require-
ments for reconfiguration of their parts to provide a working
subset .

It will be beneficial at this point , if a brief definition
is given for System Generation , as it is used here.

The concept of System Generation classically applies to the
software system only . It is considered to be a tool with which
preformed software programs , each of which address small sec-
tions of switching logic , are selected and grouped together to
provide the total software needed for a particular switching
env i ronmen t .  Specifications for that environment are presented
to the System Generation f a c i l i t y , which in tu rn , accesses s o f t —
ware programs which will satisfy the stated objective . The
resultan t  del ivery then , is a system program , contained on some
media ( tape , disc , e t c . ) ,  which can be loaded into the target
machine and operated.

An extension of this definition introduces the hardware
modules in to  the  process. This extension is made in order to
accommodate various hardware system configurations which could
be applied in the solution of a given switching requirement .

The System Generation concept presupposes certain system
characteristics , among which are :

( 1)  The software constructed is modularly oriented such
that individual programs can be logically and physi-
cally grouped.
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( 2 )  Functions to be performed can be expl ici t ly  stated.

(3) Coorelation between funct ional  requirements and pro-
gram module(s) can be developed and maintained.

(4) Equipment configurations encompass the entire spectrum
of resources which need to be applied for any configur-
at ion demanded.

Al though System Genera tion , in th is  context , does not con-
sider the system data associated with all switching systems, it
is a matter of importance and requires special study .
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.1 .1 SOFTWARE DESIGN

P r i m e  impor t ance  must be placed upon t h e  s o f t w a r e  developed
for use in a System Generation procedure , so that i t  is s u i t a b l y
constructed . This is no small feat. At the onset of the soft-
ware development , expected results must be o u t l i n e d  w i t h  achiev-
able goals in order to meet the intended result. Otherwise , the
software modules which functionally constitute the individual
components will not necessarily be developed to insure their
unique callout and concatenation capabilities with other module
members.

An example can serve to illustrate the point . Assume that
one of t he  goals to be accomplished is the construction of a
series of s o f t w a r e  modules w h i c h  provide  “ f r o n t - e n d ”  supe rv i s ion
process ing  for  t he  m a i n  body of the  ca l l  process work .  Regard-
ing  a circuit switch application , therefore , several kinds of
c ap ab i l i t i e s  would need to be b u i l t  i n to  the sof tware  scanning
logic. These would include all possible termination types ex-
pected in the system , frequency rates which need to be main-
tained , signal validation procedures per type , error detection
requirements , dat a del ivery  to in te rmedia te  processing modules ,
and program interface criteria between the scanning logic and
other system modules.

Given that all of the above conditions and implementation
details can be provided , a problem can still evolve which pre-
vents the desired result. For instance , one can imagine that
the software designer develops the scanning logic to include all
functional capabilities as one large program . They are , there-
fore , integrated together in such a manner that the entire pro-
gram must be used to exercise the capabilities for only a
selected set of termination types . This defeats the intended
result of the process.

It would seem logical that the scanning logic should there-
fore be parsed into small modules , each of whi. ~i pi c’vide , say,
process logic for one kind of terminal specifieu . ~!lese modules
would then possess the capability of being linked together to
comprise the desired scanning logic. Unnecessary modules would
be omitted . The System Generation personnel w~~ iJ then need to
specifiy each kind of terminal to be dealt with , timing charac-
teristics and numbers of each such terminations.

The f o l l o w i n g  sections deal w i th  c r i t ica l  areas which must
be considered during the entire software development process ,
l e a d i n g  towards a comprehensive System Genera t ion  f a c i l i t y .
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4 .1 .1 Software Development Languages

The use of language here is concerned with the develop-
ment tools available for application software , rather than
specialized languages which assist in the System Generation
function itself .

To the extent that languages play any role in the pro-
cess , and are not themselves transparent , requires some investi-
gation into the constructs of the resultant machine code. This
is necessary only if more than one language is used , and in
p a r t i c u l a r  if the programs generated are independently produced .

I t  may serve a use fu l  purpose in exploring why this
w o u l d  be a t t e m p t e d ; t ha t  is , why would one choose to develop
v a r i o u s  por t ions  of the  app l i ca t ions  so f tware  us ing  d i f f e r e n t
la nguages . The answer is dependent upon the  kinds of languages
made a v a i l a b l e  for  the  processor , and the  k inds  of tasks wh ich
the  opera t ing  sof tware  w i l l  be a t t empt ing  to do.

I t  can be imagined that  a swi tch ing  language , pecul iar  to
the  a p p l i c a t i o n  tasks is ava i l ab l e .  I t  may also be imagined
that other languages , tailored to other specific tasks and opti-
mized for those tasks is available. These might include a data
base manipulation language , a statistical language which re-
trieves system data and massages it in some manner , and an
expanded assembler used for special coding requirements. All of
these language tools might be made available to the software
designer to effectively and efficiently perform his task .

Given the diverse languages which could therefore be
available , it is important to consider the interrelationship of
the resulting code produced among the systems . It is expected
that the definition and access of data items in all languages
would be compatible. This is of concern since a logical rela-
tion between the languages should exist at least at the data
level. However , it may not be convenient to retain consistency
of data specifications among the languages used . A problem in
interfacing programs generated from different languages could
t h e n  result.

An example can I l l u s t r a t e  the p o i n t .  Assume tha t  the
a p p l i c a t i o n  program is w r i t t e n  in a h igh  level language format .
The data used and processed would then be defined at a high
le vel also . Certain conventions and restrictions would than be
followed in using the data. Assume also that a special language
i s  developed for the data reduction of the information acquired
lv the application programs . This language might be statisti—
(‘ally oriented , requiring data items and fields to follow some
spf’ (lf I C  forma t conventions. These conventions may not neces-
sarily ‘oin ’ide with the conventions required by the application
p rogram processes.
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The System Generation procedure would have to take incom-
patible data field conventions into account when programs gen-
erated from both language systems are combined. It is logical
to assume tha t  t h i s  should be handled by some automated process ,
t r a n s p a r e n t  to the  user of the  System Genera t ion  procedure.  One
such automated process could be the envoking of a data trans-
formation routine , which prepares the information for processing
prior to the actual processing activity.

It is also possible to imagine the interfacing of pro-
grams generated by diverse languages at the code level . Programs
interfacing would , therefore , take place by transferring control
from one program to another through some calling sequence. Here
again , the conventions developed may be inconsistent between the
languages , perhaps in the parameter handling area . It would
seem logical then , to provide for these inconsistencies within
the System Generation procedure as was suggested earlier. In
t h i s  case , however , it might be bet ter  to adjust  the  parameter
handling process of one of the languages in question , rather than
to introduce data transformation procedures which necessitate
gross expenditures of time and core.

The solution to these kinds of situations would have to
be addressed during the design of the System Generation soft-
ware , taking into account the idiosyncrasies of the languages
which support the applications software.
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.1 , 1 .2 Program M o d u l a r i t y

I t  w i l l  he of great impor tance  in p r o v i s i o n i n g  for  the
System Generation eventuality that the programs be composed of
smal l  pieces of logic w h i c h  can be grouped together to form a
specifiable system function. Otherwise , tailored software con-
figurations cannot be created, which is the intent of the exer-
c ise .

The modules  of so f tware  should then  r e f l e c t  some c r i t e r i a
by w h i c h  they can be judged in m e e t i n g  the  ob jec t ive. I t  may be
d i f f i c u l t  in d e f i n i n g  such module c o n s t r a i n t s, to accommodate
a l l  possible  imp l e m e n t a t i o n s , w i t h o u t  imposing severe l imi ta-
t i o n s  on t h e  design . However , the  resu l t  is wor th  ach iev ing  and
should therefore be pursued .

F o r t u n a t e l y ,  a design technique  has evolved which pur-
ports to encompass the attributes which are necessary for modu-
larized software. This concept is included in what is known as
“Structured Programming ” . A section of this report deals with
the details of this approach. It is sufficient now only to
point out that a method does exist , and can be used to support
t he  System Genera t ion  ob j ec t ive .

Of major concern then , is to de f ine  the level of modular-
i ty  w i t h  which  systems should be produced.  I t  is d i f f i c u l t  to
i m a g i n e  a t r u l y  e f f e c t i v e  System Genera t ion  procedure which  has
imposed upon it program modules which were designed independent
of any such considerations. The result would be , when con-
sidering historical software generation techniques , a group of
very large program modules , each of which provide many special
system functions intertwined in a manner which disallowed their
segmenta t ion . At best , it could be expected that these large
modules would have bu i l t  in to  them software “switches” which en-
abled or disabled certain sections or features. But the total
code would need to be carried into any system which required
even a small portion of the module  logic .

The idea will be to parse the software functional require-
ments into a group of smaller functions. These smaller functions
may in turn be parsed into several functions themselves, etc.

Depending upon the overall size and top level structure
of the software system , the parsing activity may evolve into a
myriad of very small routines and subroutines. These small
modules will ~-ontain only a fraction of any particular function
which the system spec i f i ca t ion  demands. However , the modules
are small and manageable , which was one of the results to be
achieved .

The following remarks must be prefaced with a definition
of functional software and program organization.

VI-29



Whe n viewing a major software implementation , ii. is neces—
s ar v  to consider t h e  f u n ( t ions which the system is expc.~ted to
p e r f o r m . This is because software has been designed to perform
e f f i c i e n t l y  t hese  des i r ed  f u n c t i on s  w i t h  r e spect  to bo th  t ime
and memory utilization . There fo re , in a Circuit Switch system ,
s i n g l e  st r eams  of logic  to encompass each t y p e  of cal l  place-
m e n t  (seven digit local , seven digit extended area se rv ice , two
digit abbreviated diali n g, e t c . ) , are not  f ou n d .  R a t h e r , the
software would be constructed in many major p ieces , each of
w h i c h  provides  some p o r t i o n  of m a n y  c a l l  t y p es such as a por tion
wh ich handles supervision signaling, an ot her wh ich handles  route
t r a n s l a t i o n , another which handles digit collection , etc. In
this manner , both execution efficiency and minimal memory utili-
zat ion is achieved .

Th is organ iza tion leads to t h e  unders tand ing t h a t  these
programs are composed of many small functions , each of wh ich
contributes to some portion of one or more system functions.
Because of this , some of the  modul es wi l l  be i n t e r r e l a t e d  and
dependent upon one another , wh ile others will not.

Return ing now to the main topic . In viewing any partic—
program the question can be asked , how is it known w h i c h  modules
need to be grouped toge ther  to f orm any one of t he f u n c t ions
wh ich the System Generation personnel may call out? A partic-
u la r  f u n c t ion may need to cons ist of f rom ten to one hundred of
these small  modules .

Two solutions come to mind. There undoubtedly are others.

F irst , the ident ity of ’ each func ti on wh ich the system was
capable of handl ing would be defined . This information is avail-
able s i nce the  so f tware  sys tem wa s based upon kn own f u n c t ions
pr ior to the parsing activity. Then the identity of each module
wh ich assisted in providing the specified function would be de-
f ined , pull ing them all together physically, so that each fun-
t ion was uniquely grouped . Each module still maintains its own
separate ident i ty , although it is physically grouped with others.

Th is may t u r n  out  to be the  mos t v iabl e appr oach.  The re
are some drawbacks , however , the most serious of which is module
redundancy. As each function was being identified as requiring
several modules grouped together , these modules were separately
l i f t e d  and p laced w i t h  o the r  mod ules to form the  whole f u n c t i o n .
Each function of the system followed the same practice , indepen-
dent of one another. It may evolve that the same module was
l i f t e d  several t imes to form a part  of several f u n c t i o n s .  This
means t h a t  the  same logic , if ’  a l l  f u n c t i o n s  are r equ i red  fo r
some c o n f ig u r a t i o n , cou ld  ex is t  in memory many t imes  over .

This is not necessarily a poor practice. The extent of
these occurrences would have to be analyzed in conjunction with
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availahl e memory space to properly judge the concept.

There is another alternative. It would be possible during
the correlation between functions and modules , to “mark ” each
modul e for inc1usion into each function that it serves. No
phys ical configuration would occur during this process. Rather ,
a f unction identifier mark would be included with each module as
an information adapter. This information could then be used
dur ing the system generation process to envoke each module as it
is required. But the module would be envoked only once per
system configuration , so tha t mul t iple copies of ident ica l logic
would not he retained in memory.

To name one drawback to th is approach , it can read ily be
seen that module re—entrant capability might have to be intro-
duced , in which case , more complicated software would result.
Th is is not necessar i ly the case , however , since the  str u c t u r e
o t  the software should dictate whether this need exists . W i t h  a
thorough knowledge of the system operation , part icularly in
schedul ing criteria , it might not be required to develop re-
e n t r a n t  r o u t i n e s .  In any event , these k inds  of c a p a b i l i t i e s
should  r i g h t l y  be addressed in programm ing conven t ions  and no t
here.
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U ~~~~~ Linking Arrangements

I n h is t or ical  per spec t ive , l i n k i n g  of program s is per-
formed by a system loader , which operates on the target machine.
The loader has the capability to group individual programs to-
gether and provide for their interrelationships . This require-
ment may still be required to some degree as it typically exists
today . However , it is felt that much of this activity is re-
quired within the System Generation process itself , and to a
much lesser extent on the system processor. Relocation pro-
cesses of course , may still be preferable at system load time .

The li nk ing  process wi l l  have to concern i t se l f  w i t h  some
module acqu i s i t ion  method . It  may t u r n  out t h a t  t h i s  task is
one of the larger e f f o r t s  in the  cons t ruc t ion  of the System
Generation procedure. Some of the subtasks which can be en-
visaged are:

(1) Identification of all modules within the system .

( 2 )  Correlat ion of system func t iona l  requirements w i th
individual  module elements.

(3)  Development of d e f i n it i v e  procedures by which  the
modules are grouped together .

The above three subtasks are highlighted because of their
expected major importance. There are undoubtedly others which
deserve attention . A discussion of the identified tasks follows.

4.1 .3.1 Identification

For a very large Message Switch or C i rcu i t  Swi tch , the
number of modules wi l l  to ta l  a thousand or more.  If  the  defini-
t i on  of a module is extracted from the s t ructured programming
method , then a physical l imi t a t ion  is placed upon a module which
prevents its size from exceeding one printed output page of a
program listing. Circuit Switch programs in the medium to large
size , are currently within the 1000 to 3000 page printou t range.
These are primarily assembly language oriented . Message Switches
produce even mor e code , again at the assembly level , when all
off-line software is introduced .

It  can readi ly  be seen that the identification of modules
w i l l  be no small e f f o r t . Some technique could be developed
which automated this identification process. This would not be
required , except that for very large systems the manual labor
required could be excessive. The concep t. is important , however ,
and not the implementation criteria at this point. What is
needed then is some unique i d e nt i f i e r  which can be associated
wi th  each module.
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The next area which needs iden t i f i ca t ion  consideration re-
gards the collection of modules which are dependent upon one
another.  This is not system funct ional  dependency,  but rather
logical dependency among func t ions  which have been segmented to
accommodate rules inherent in Structured Programming .

An example wil l  best serve this de f in i t i on . Suppose that
as part of some process, a need exists to provide a data trans-
forma tion from ASCI I  to one of  severa l code f o r mats , and that
according to our knowledge of the system , it is expected that
only a subset of these transforms need to be accommodated on any
given system . As a software designer , parsing of the logic into
several different logical and physical segments would be per-
formed . For instance , a routine to convert from ASCII to binary ,
a rou tine f o r  A S C I I  to BCD , and a rout ine for A S C I I  to hexi-
decimal. A tree structure would then be developed as illu-
strated below .

ASCII  CODE
CONVERS ION
CONTROL

I 

—

~ _____________ I
ASCII ASCII ASCII
TO TO TO
BINARY BCD HEX .

This A S C I I  code convers ion block conta ins control logic
which ascertains, according to some input it receives , to which
transformation module control should be directed . The designer
would then have to indicate that each of the three transforma-
t ion modules required the conversion control module for its
operation . Therefore , there would be specified three distinct
groups of t ransformation schemes which could be selected .
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In th is  context , two addi t ional  points can be made . The
conversion control module would carry with it a name which was
common to all three transformation schemes. The logic of sel-
ected modules would be built in such a manner to recognize
m u l t i p l e  requests for the control module , and insert that  module
only once. Of course , the capabiltity should exist which dis-
abled this multiple selection and allowed redundant copies of the
control module to exist . This is warranted on some occasions
and a means to allow such duplication should be provided .

The identification of the modules within the system is im-
portant since the~’ will be used to organize the software. The
code conversation example would then be modularly identified as
depicted below .

60

ASC II CODE
CONVER SION
CONTROL

16 1  
_ _ _ _  

62 163
ASCII r ASCII  TAscil
TO I T O  I T O
BINARY BCD HEX .

The cembinat ions of conversions can be described as:

ASCII to Binary  = 60 , 61
ASCII to BCD = 60 , 62

ASCII to Hex . = 60 , 63

Further refinement of module identification will be dis-
cussed in paragraph 4.1.3.3.3.

‘rhe second point is that some procedure would hav e to be
developed which recognized , in the control module itse lf , re-
quests for any conversion types which had not been specified .
It  would theoret ical ly be possible for  the control module to
receive an input to transform ASCII to BCD , but the BCD module
had not been specified . This would be an error condition which
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should not cause catastrophic situations to occur , if that event
took place.

The third and final area which requires i de n t i f i c a t i o n  re-
gards the system functions to support any possible capability
wh ich the system was intended to handle. This information
wi l l  usual ly  be contained w i t h i n  the  system spec i f i ca t ion .  The
ind iv idua l  capabi l i t i es  wi l l  have to be un ique ly  recorded , so
that they may be envoked individually. For instance , a list for
confe r enc ing  capabi l i t ies  of a C i rcu i t  Swi tch  would c o n t a i n :

1.0 CONFERENCE

1.1 BROADCAST

- 1.1.1 Pre-emptable
1.1.2 Non-Pre-empt able

1.2 PROGRESSIVE

1.2. 1 Pre—emptable
1.2.2 Non—pre—emptable

1.3 PRE-SET

1.3.1 Pre—emptable
1.3 .2  Non—pre—emptab le

1.4 MEET-ME

1.4. 1 Pre—emptable
1.4.2 Non-pre-emptable

Each fea ture  and capab i l i ty  contained w i t h i n  the system
would have to be covered in detail similar to that outlined
above.

4 . 1 . 3 . 2  Cor re la t ion

The next sequential process which would occur concerns the
relationship between system capabilities and module utilization.
The system designer will have cognizance of these relationships ,
and can logically be expected to provide this correlation. The
task will be large and time consuming , but crucial to the System
Generation process. It is not apparent that any automated
scheme can be used here , although some technique might  con-
ceivably be devised to do so.

The correlation Is envisaged to be as follows , again using
the example on conferencing.

VI—35



Feature I

1.0 CONFERENCE ; 1 .1  BROADCAST ; 1 . 1.2  Non-Pre-emptable
Modules 01 , 02. 04, 51 , 52, 53, 60, 61 , 62, 78

Feature 2

1.0 CONFERENCE ; 1.2 PROGRESSIVE ; 1.2.1 Pre-emptable =

Modules 01 , 02, 03, 51 , 52, 53, 60, 62, 63, 77,
79

The r e l a t i o n s h i p  dep ic ted  above represents  an inpu t  to the
System Genera t ion  process which  w i l l  be used when c o n f i g u r a t i o n
specifications are developed . Feature 1 indicates that for the
f e a t u r e  for non—pre—emptable broadcast conference , eleven modules
are needed . Modules are identified as 01, 02, etc. For a pro-
gressive conference which is pre—emptable , a list of the neces-
sary modules are given . Notice that the code conversion modules
outlined in the past section to construct these correlations
have been used.

This i n f o r m a t i on would be entered into a table , accessible
by the  System Generat ion logic , when e i ther  of these features
capabilities were required . The process of selection during
System Generation operation would be automatic.

The correlation process is considered in greater detail in
pa ragraph 4 . 1 . 3 . 3 . 4 .

4.1.3.3 Procedur es

The immediately preceding sections concerning module and
function identification and correlation have provided a pre—
l i rn ina ry  method by which  the sof tware  system can be viewed , con—
structed , and grouped . This section addresses the ordering of
the modules themselves , relative to their hierarchial structure
and execution sequence. This is a vital portion of the linking
process. The modules must not be arranged in random , but in a
predetermined order . That order requires speci f ica t ion.

Before examining this subject in detail , a digression is
needed for background information . The overall structure of a
sof tware  system should be viewed , in terms of how it is put
together , and the interrelationship of its parts. A Circuit
Switch structure is used for the example , highlighting these
areas which deal with the call processing logic.

4.1.3.3.1 Background

In general , the basic elements of the Circuit Switch in-
clude the following distinct sections.
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(1) Scanning Logic - The Supervision Signaling Function ,
which consists of tha t  por t ion  of the  system which
provides for the supervision of terminations attached
to the system .

(2) Register Logic — The Address Signaling Function , which
consists of the por t ion  of the system which provides
for  the dialed digi ts  reception , and causes the out—
pu l s ing  of digits to distant switchboards. This
log ic would also receive digits incoming from other
switchboards .

(3) Matrix Logic - The Matrix Control Function , which con-
sists of the software which interfaces with the
matrix to cause path connection and disconnection
operations , and tone injections in certain systems.

(4) Translation Logic — Part of the Call Processing Func-
tion , which provides the section of the system which
performs the analysis of address digit informat ion ,
and translates that information into subscriber ter-
mination addresses or into a trunk group selection
for calls progressing outward to distant switchboards.

(5) Non—Register Processing - Also part of the Call Pro-
cessing Function , which provides the various call
processing tasks which are performed prior to or after
the dialing and translation phase of the call. This
includes initial off—hook processing , classmark or
feature privilege checking allowed per subscriber , re-
moval of ring and ringback and associated timing , and
busy tone control .

The above overview of the process does not totally present
the entire picture , however . To belabor the definition a bit
longer , the participation of each section must be considered
during the establishment of a call.

The scanning logic operates periodically to determine on—
hook/off—hook signals, among others. An off—hook signal is then
in i t i a l l y  handled by this logic , which delivers information to
the non—register processing segment. In this process, the
terminal which is requesting service is compared with pre—stored
data , such as type of register required , direct access capa-
bility, etc.

If the data indicates that a register is needed , an idle
unit is selected . The connection of the terminal to a register
is handled by the mat r ix  logic section . Thereaf ter , d ial  tone
Is applied and the register logic accepts digits as they are
dialed . These digi ts  are then processed by the translat ion
logic which determines where the call should be terminated ; i.e.,
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another local subscriber termination or a particular outgoing
t r u n k .

Assuming t h a t  a local subscriber is requ i red , t h e connec-
t ion is made between the  two local subscribers, f o l l o w i n g  dis-
connection from the register . Again , the matrix logic is en—
yoked for  t h i s  purpose. Thereaf te r , r ing  and r ingback tones
are sent to the  respective terminat ions , and the call handl ing
is then turned to the non—regis te r  logic section.

When off—hook is detected from the called subscriber , the
non-register logic removes r ing  and ringback and the subscribers
can begin conversation.  From that  point onward , the scanning
logic is directed to report on-hook condi t ions  from ei ther sub-
scriber , and upon that  condit ion , a sequence would then be
undertaken to disconnect the matrix path.

As can be seen from the above call procedure , different
areas of the software logic are directed into execution to
handle different portions of the call sequence. A similar situ-
ation will occur when special call features, such as confer-
encing , pre-emption , etc., are required . Most Circuit Switch
software is designed in this manner , or variations on the same
theme , because different portions of the call establishment re-
quire different timing considerations. Also because the system
must accommodate many calls , simultaneously, each is likely to
be in some different state of completion at any given time.
The resources of the processor cannot then be totally dedicated
to any par t icular  call from start to f in i sh .

A block structure of these major software programs is
shown in Figure VI—l—l , with execution times associated with
each block.

4.1.3.3.2 Structure

The functions required within Circuit Switch software as
outlined in the previous section need to be considered in more
de ta i l .  It is consistent with current practices of software
design to view the software as a “Tree Struc ture ” . The begin-
ning of such a structure was outlined in paragraph 4.1.3.3.1 ,
where the major call processing modules were depicted . That
representation can be expanded further .

Consider the scanning logic mentioned earlier . This pro-
gram logic may consume 1 to 2 thousand instructions. It would ,
therefore , according to the rules of module size , consist of 20
to 40 small modules . Each module is interconnected in some
predetermined manner with other modules to provide the desired
program sequence.
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An example of a portion of the scanning logic could be
shown in tree s t ruc tu re  as depicted in Figure  V I - l— 2 .

The tree s t r uc tu r e  depicted shows some of the de ta i l  of the
scanning logic. The program is segmented into small functional
modules , each of which contribute some portion to the overall
obj ect ive .

While many systems are not developed in terms of such a
s t ruc tu re , there appears to be no reason which precludes such a
representa t ion . It is basic to the System Generation concept
being discussed tha t  such a representat ion be done.

Two points  of in teres t  are ment ioned concerning tree struc-
tures .

First , there  is no in format ion  w i t h i n  the module representa-
t ion  to indicate expected execution sequence. It is not in-
tended that there should be such an indicat ion . The intent is
to show the modules which will be implemented , and their con-
necting sequence only. For instance , the scan logic shows a
module which addresses terminals of type one. Submodules show
verification and code conversion modules. It  cannot be ascer-
tam ed , except intuitively, which is executed first or second ,
or if any order prevails at all. There should exist other docu-
ments (Sequence Diagrams) which show tnis relationship. The
intent in System Generation is not to produce an operational
sequence knowledge , but rather to catalogue the components of
the system and organize them into some workable configuration .

Second , for some branches of the structure , a block may be
shown which appears to be identical to those which exist in
other branches. (Branch is defined as a collection of modules
which when taken together , constitute an identifiable system
f u n c t i o n ) .  These branches., in fac t , may contain some of the
identical logic , duplicated or , on the other hand , the logic may
not be duplicated . Again , the intent here is to provide for the
tree structure to reflect logic in each area which is required ,
w i t h o u t  showing in terconnect ions  to prevent dup lication . As an
example , the scanning logic shown in this section reveals a
module called “Binary to BCD” which is repeated twice. It is
necessary tha t  this module be made part of both the Type 1 and
Type 2 processing . Instructions concerning the requirement for
dupl ica t ion  must be given to the System Generation process in
order to handle it appropr ia te ly .

Returning to the main topic now , it can be seen that some
method must be employed which Ins t ruc ts  the System Generat ion
facility according to the manner in which the modules should be
arranged . IL would have to know which modules should be grouped
within the scanning logic , which into the non—register logic ,
etc., and how to arrange the modules within each section.
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In order to accomplish this , it is necessary to consider
further the identification of modules beyond that already under-
taken .

4.1.3.3.3 Further Identification

The identifiers which were given to the small modules in
paragraph 4.1.3.2 , serves only to correlate ea~’h segment with
respect to its use with various system features , but there was
no in fo rmat ion  regarding major program blocks w i t h  which  they
should be associated .

A block identifier is needed for this purpose. Suppose
tha t  three character i den t i f i e r s  are chosen for  each program
block. The assignments for the Circuit Switch software could be
designated as follows :

Scanning Logic = SCL
Non-Register Logic = NRL
Register Logic = RGL
Matrix Logic = MXL
Translation Logic = TRL

It likewise seems necessary to expand upon the individual
module identifiers initially undertaken in paragraph 4.1.3.1.
When the correlation between modules and functions is made , as
in paragraph 4.1.3.2, these identifiers would then be added.
The previous example is shown with additional identification in
Figure VI-l-3.

Each module is iden t i f i ed  in two ways . The program identi-
fier (SCL in this case) reveals that all modules names are to be
included within the total program composing scanning logic.

In addition , each module is represented by a letter and two
digits. There is no inherent reason why an expansion of letters
and numbers could not be utilized . The letter is used to al-
locate program modules to various levels within the hierarchy .
The letter “A” represents the topmost level , “B” the second ,
etc.

The two numeric digits of each module identifier are used
to identify each module within a particular level. It is prob-
able that as the tree structure develops from top to bottom , the
number of modules will increase at each level . However , it is
doubtful that more than two digits are needed to identify the
modules , even at the lowest level.

The ability to identify each module wi th in  a program ap-
pears to be satisfied using the previous notation . But now it
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is desired to associate each branch of Lhe tree structure with
all of its members. This will become important during the cor-
relat ion process discussed in the following section.

It will frequently occur that individual branches prov i de
more than one function . Each function may require only a sub-
set of the logic contained within the branch. For a particular
conf igurat ion then , it may not be necessary to have all com-
b inations. Some means must be provided to select the partic-
ular subset(s) required .

In order to accomplish this, add itional identification
indicators to the modules must be added . These indicators will
instruct the system about separate branch functions. Figure
V I - l — 4  shows fu r t h e r  ideri~~i f i c a t i o n  of the  Type 1 term in a l .

A spec ial indicator , attached to each module identifier , is
shown . For this example , the topmost module indicates that
there are three funct ions (A , B, and C) performed by the branch.
Each module which contributes to funct ion A is so marked . Func-
t ions B and C follow the same procedure.

This example might represent a terminal which when so equip-
ped , transmits ASCII and for others , t r ansmi t s  binary informa-
tion . Further , the translation wh ich is required night be to
BINARY for certain funct ions and into BCD for othe~ s. I t  can
also be seen that the verify module is only used when functions
A and B are performed .

The modules wh ich are used for each function are:

Funct ion A - SCL-B01-A ,B,C; SCL-COl-A ,B ,C; SCL-C02-A ,
B; SCL-DOl-A

Funct ion B - SCL-BOl-A ,B ,C; SCL-COl-A ,B ,C; SCL-C02-A ,

B; SCL-D02-B

Funct ion C - SCL-B0l-A ,B ,C; SCL-COl-A ,B ,C; SCL-D03-C

The entire program block for the scanning function can now
be identified as shown in Figure VI-l—5.

There is a second method of module associat ion which would
not require any further identification of modules. This method
would associate modules in the order by which they are pre-
sented to the system . An example using the previous tree struc-
ture is given .

SCL-A01 , SCL-BOl , SCL—COl , SCL-C02 , SCL-D0l , SCL-D02 ,
SCL-D03 .
SCL-AOl , SCL-B02 , SCL-C03 , SCL-C04 , SCL-D04
SCL-AOl , SCL—B03 , SCL-C05 , SCL-C06
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TERMINAL 1[ TYPE 1
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Th is method is simpler because it does not require addi—
t ional iden ti f iers to in te r r e l a t e  the  modules.  However , it
suffers in completeness because only main branches may be so
associated , and lower level branches may not be specified. The
lack of this capability may not incur any serious problems , de-
pending upon the eventual use which is made of these branch
i d e n t i f i e r s .

For the purpose of the ongoing discussion , however , the
first method outlined will be used.

4.1.3 .3 .1 Further Correlation

At this t ime , it has been possible to identify totally each
module individually, associate all modules which belong to the
same branch , identify modules within a branch which perform
separate functions , and identify them with respect to major pro-
gram blocks. The next step in the System Generation process
involves the correlation between modules and functions. This is
an expansion of what was begun in paragraph 4.1.3.2.

The need exists to identify every possible function which
the system is being constructed to handle. Many of these func-
tions will span the entire spectrum of major program blocks ,
wherein , ouly certain parts of the functions are provided in
each block. This is a laborious task , but crucial to the de-
sired end result.

The task can most easily be accomplished while the software
design is in-progress. The designer of each program block is
the logical one to provide this function . This means that an
additional task will be superimposed upon the program design ,
with a corresponding increase in manpower per block. It is
assumed that the design is being accomplished according to the
Structured Programming rules so that the overall objective can
be met .

In addition , the gathering of information will have to be
specified for the software designer , in terms of what informa-
tion is to be collected during the design stage. He should be
aware of how the logic he is developing is to be used so that
he can make the appropriate correlations. A partial list of
what might be submitted to him is shown below .

Extended Call Features

(1) Direct Access Dialing

(2) Abbreviated Dialing

(3 )  Cal l  Forwarding
(4) Call Transfer
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(5 )  Line Grouping
( 6 )  Call  Placement Res t r i c t ions
(7)  Busy Diversion
(8)  Camp-on Busy
(9)  Group H u n t i n g
(10) Remote Answer
(11) Attendant Recall

Digit Reception

(1) Dial Pulse

(2) DTMF

(3) MF

(4) MF Confirmation

Using the supplied list , the designer would then consider
which modules in his design participated in any of the list
items . The previous example of the scanning logic can be used
to explain his duties.

The initial task of the software designer will be to ident-
ify the modules in his program block as was outlined in para—
graph 4 . 1 . 3 . 3 . 3 .  Having done this , he can now begin the corre-
lation process .

He begins by analyzing each list item , determining whether
any of the logic supported the particular item , and denoting
those which do. An example of a chart which he might prepare
illustrates the technique.

System Function Modules

( 1)  Direct Access Dia l ing  None
( 2 )  Abb revia ted  Dia l ing  None
( 3 )  Call Forwarding None
( 4 )  Cal l  Transfer  None
(5 )  Line Grouping None
( 6 )  Ca l l  Placement Re— None

s t r ic t ions
( 7 )  Busy Diversion None
(8) Camp-on Busy None

(9) Group Hunting None

VI-48



(10)  Remote  Answer None

( 11) A t t endan t  Recall  S C L - A O l ;  SCL-B01 ; SCL—C0l ;
SCL-D0 3 ; SCL-B03 ; SCL—C05 ;
S(’L -COG

(1)  Dia l  Pu l s i n g  SC! - A O l ;  SCL—B02;  SCL-C03 ;
SCL -C04 ; SCL-DOl ; SCL-B03 ;
SC L- C 05

( 2 )  DTMF
(3 )  MF Non e
(4) MF Conf irmation Non~

It can be seen from the pre~~~ 1tng list that the scanning
logic modules do not contribut e t o  tho implementation of the
first ten functions. This r’a a1.~ that if any change is made to
those function s , or if the~ ar ’~ n~ 1 inclu ded within the total
software system , that no (-ilanges or a(cc)mmodat ions need be made
for the scanning logic.

The first item i n  the list which ts affected then is the
Attendant Recall feature . It can b~ seen that all modules with-
in Terminal Type 1 are used , except for modules which convert
ASCII  to Binary and ASCI I to I3CD and the Verif y Input module ,
and t ha t  a l l  modales  under  t h e  In t e r p r o g r a m  Data  Transfer  block
are used but none under Terminal Type 2 are required .

The second list item which uses scanning logic is for Dial
Pulsing. For this function , all of the modules under Terminal
Type 2 are needed , one of the modules under Interprogram Data
Transfer is needed , but none of the logic included w i t h i n  Ter-
minal Type 1 is necessary .

Using this approach , it can be seen how all modules can be
isolated with respect to their participation in the multitude
of system functions , but it can also be seen that there is much
writing to be done by the software designer to provide this de-
tailed information.

In an attempt to reduce this effort , and to minimize the
number of manual errors which could occur , a modified version of
the task is envisaged . Recalling that in the previous section ,
it was decided to denote the various sub—branches within the
structure , this idea can now be used.

It will be a common occurrence that an entire branch will
be needed to fulfill a functional requirement. There will also
be many situations which will require only a subset of the en-
tire program block. Therefore , for the latter situation , it is
necessary to specify the branches which are needed within the
block to fulfill the desired function . The branch designators
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which are created , allow this to be done readily. Therefore ,
the module correlation can be modified , using branch indicators ,
to look as f o l l o w s :

Sys tem Fu n c t i o n  Modules

A t t e n d a n t  Recal l  SCL—A0l ; SCL—BOl-C ; SCL—B03—A ,B

Dial Pulsing SCL—AOl ; SCL-B02—A ; SCL—B03—A

Th e ru l e wh ich is establ ished and used here is that  if any
br anch indi cator  is specif ied in the  n o t a t ion , then all sub—
modules  which  car ry tha t  branch ind icator are to be included .
I n the  example for  the  At t endan t  Recal l  fu n c t i o n , i t  is necessary
to spec i fy  only  the “C” branch of the Terminal  Type 1 block s ince
no other modules were necessary. The Interprogram Data block was
reduced in specification since all modules were used .

In the example for Dial Pulsing , it is necessary to specify
only the topmost module of the Terminal Type 2 block , and one
branch from the Interprogram Transfer block.

The reduction in module correlation writing will increase
the efficiency of this effort and reduce the time required to
perform this function .

There is a further refinement which can be made to simplify
the assoc iation process . This is the concept of grouping. it
is defined in the following manner .

When a software designer constructs a major portion of
logic , there are certain associations which he knowingly makes
about his design. Those associations are usually implied , and
not explicitly stated. For instance , the designer knows that
when the  Terminal  Type 1 branch is used , it will always require
assistance from the Interprogram Data Transfer branch. There-
fore , the Terminal Type 1 logic is never sufficient by itself .
The same is true in the example for Terminal Type 2 branch.

This relationship will exist many times over in the soft-
ware design . Therefore , when it does exist , it can be expli--
cityly stated in some manner , for information handling purposes
dur ing  the  System Generat ion process. It migh t  be s tated as:

If , SCL-B0l-C , then SCL-B03-A , B
an d If , SCL-B02-A , then SCL-B03—A

The previous correlation of functions to module relation-
ship would then look like :

VI—50



System Function Modules

Attendant Recall SCL—AOl ; SCL-B0l-C

Dial Pulsing SCL—A01 ; SCL-B02-A

This grouping concept allowed the elimination of the re-
quirement to specify the Interprogram Data Transfer branch
altogether . It is expected that in a major system development ,
this concept will reduce appreciably the module relationship
entries .

As an extension of correlation process , assume that some
feature , “X” , required all of the logic within the scanning
logic program block. All that would have to be called out then
would be:

Feature “X” SCL—A Ol

This would indicate that all modules at lower levels should
be included.

There is another topic which needs to be addressed in this
section. It deals with the multiple allocation of modules in
meoory.

When the software structure is drawn according to the struc-
tured programming criteria , it was of no concern that multiple
representations of the same module were constructed many times.
It was of some concern that the representation reflected the
logic which had to be performed rather than where it physically
existed. An examination of a large system would then most
likely reflect several modules which performed the same function .
It is foreseen that , in some cases, multiple copies would be
desired .

There must be provided , therefore , some means which in-
structs the System Generation process in the manner in which to
handle this condition.

The previous example reflects this situation for the BINARY
to BCD conversion . This is~the same module used by TerminalType 1 and 2 but specified by two module identifiers. If the
software designer wants t h i s  logic repeated twice , then he need
not ins t ruc t  the System Generation process in any other manner .
Since the generation process works with module identifiers only,
there is no indicat ion that  they contain the same logic , and
thus , it will be duplicated .

However , if the module needs only one inclusion , the soft--
ware designer must so indicate this requirement. This can be
accomplished through an equivalency statement as follows :
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Eq ua te  SCL-D03—C to SCL-D04-A

The System Generat ion system would then determine  if both
of these modules were called out in the  cor re la t ion  process and
insert the logic only once . Of course , re-entrant procedures
would have to have been applied , if necessary. It is assumed
that the designer has taken this into consideration during the
implementation.

4.1.1 Overlay

The designs currently being undertaken for both Message
and Circuit Switches have evolved over the past decade to the
point where these systems are reaching very complex magnitudes .
During this same period , equipment has matured appreciably. The
techniques applied to the solutions of these system problems ,
particularly concerning software development , are capable of
using resources which were not heretofore available.

One of these areas concerns the use of overlay programs.
It is becoming feasible to consider that certain portions of the
software need not be resident within the main program storage
areas, i.e. , magnetic core or solid—state memory. Some programs
may be used only occasionally and therefore , retained on some
external media , such as disc or drum storage devices. When this
is done , space must be provided within main memory which will
accommodate different overlay programs at different times.

Care must be taken when overlay solutions to memory utili-
zation is considered . An increased amount of system overhead
will occur . This will take additional memory space , as well as
the design of system protocols to involve this capability.
However , the chief problem which must be considered is response
time . It would be possible to configure an overlay capability
in such a manner that the potential system throughput is de-
creased. Or , the system may , under some conditions , fail to
respond in sufficient time so that it doesn ’t meet the intended
objectives at all .

The main reason for addressing the overlay possibilities
is in regard to program configuration criteria. A means must
be provided to i d e n t i fy  programs which should be conf igured  to
be always resident within the main storage areas of memory as
well as those which can reasonably be expected to accommodate
overlay handling .

The System Generat ion process will then have to auto-
matically handle both overlay and non-overlay programs . Some
method must then be devised to indicate this requirement. Ad-
ditionally, the system will have to physically configure the
total software system to be consistent with the overlay scheme.
This will amount to positioning the program modules on the input
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media (tape, drum , disc , etc.), so that proper identification
and loading can occur.

One final point is to be made for overlay programs . The
system measurement capabilities will have to take into account
overlay programs which contribute to the system loading. The
method which is advanced for this analysis , should also be used
for these kinds of conditions. However , transfer delay para-
meters may have to be inserted into the calculations to predict
the overall effect of using this technique.

4.1.5 Executive Control

The executive program is a special case of the applica-
tion program system in both Message and Circuit Switch environ-
ments. Because it is somewhat unique , some special procedures
are foreseen in its handling by the System Generation process.
The extent of any special handling will depend upon the kind of
function which it is designed to perform .

4.1.5 .1 Functional Overview

Typically, executive programs are designed to handle the
scheduling activities of all other program modules within the
software structure . This involves using some pre—established
criteria by which programs are called into operation. Many
methods have been devised to provide this kind of information.

I n add i t ion , many executive programs are also tasked wi th
other  system f u n c t i o n s .  For instance , the  Inpu t/ Ou tpu t  func-
tions may be relegated to the executive. It then becomes the
chief program module which interfaces the common control sub-
system with the other elements of the switching system through
the transfer of the “real world” data. The executive may also
be tasked with the duty of performing system maintenance activi-
ties , including switchover processes. Periodic checks would
then be made by the executive to verify the operational capa-
bility of most of the system . Special sequences would be called
in to  operat ion when these checks revealed error symptoms .

4 . 1 . 5 . 2  Special Problems

The make—up of the executive is not particularly important
in the physical construction of the software system , except that
portion which addresses scheduling . This area deserves further
attention .

It will be possible for the executive to conform to the
rules of module segmentation as is done for other software
blocks . Individual program modules can be identified and cor-
related into branches as with other programs . The problem is
not with this process, but in specifying the major program
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blocks which the executive uses, as well as indicating the pre-
ferred execution sequence that is to be followed.

To make this point somewhat clearer , consider the program
structure which was shown in paragraph 4.1.3.3. Five applica-
tion program blocks were depicted , each of which was indepen-
dently associated with the executive program block. It was
possible to consider each program block as a separate entity,
parse its logic into a multitude of small modules , and interre-
late those modules according to their logical branches. But
there was no consideration given to how that program block inter-
faced with the executive , or , how the System Generation process
could be informed of this relationship. This effort was deferred
until the executive control was discussed .

4.1..’~.3 Viable Solutions

It is apparent that some means must be employed to con-
figure the executive with the other portions of the system . The
task may be considered as fulfilling two objectives :

(1) Parameterize the executive for scheduling programs at
predetermined times or conditions.

(2) Provide information to the loading process so that
processor capability can be ascertained.

Since it cannot be precisely determined how an executive
will be constructed in a given environment , it will be possible
to explore only certain conventions by which the objectives can
be met.

Assume that the scheduling process involves a table look—
up process for determining which program block to schedule.
This table then is composed of fixed entries which must be pre-
set to reflect the scheduling patterns the system must accommo-
date. It m ight also occur that execution frequency information
is conta ined in such a t ab le .  A representa t ion  of th i s  tab le
is shown below , using the modules which were previously men-
tioned .

PROGRAM BLOCK FREQUENCY
Register Logic 12.5

Sca n Logic 25 .0
Mat r ix  Logic j

Translation Logic 25.0
Non—Register Logic 200.0
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The table reflects each program which the executive is sup-
posed to schedule. Corresponding to each program is frequency
i n f o r m a t i o n  which  r e f l e c t s  the desired execut ion cycle .  I t  is
assumed t ha t a system clock is implemented in some manner  and
used by the executive for timing purposes.

In the above example , the executive would schedule the
register logic’ each 12.5 ms , the scan and t r a n s l a t i o n  logic each
25 m s , and the non-regis ter  logic every 200 ms.  The “ I ” , cor-
responding to the matrix control logic would indicate that this
program is directed into execution by a system interrupt , rather
than any timing criteria.

Some rules may also be applied by which the executive is to
schedule these programs. For instance , it could be stated that
the order is important , and therefore , the programs should be
scheduled from top to bottom according to their ranked position
within the table.

This would mean that at any period of time , when more than
one program was supposed to execute , the program which was
highest in the table would be called first .

This rule might also apply to programs scheduled by inter-
rupt , such as the matrix control logic. Since it occupies the
third position in the table , it would be activated only if lower
programs specified in the table were operating . That is, if any
program order higher was operating , the interrupt would not be
immediately honored .

It would be possible to inform the System Generation pro-
cess of this scheduling arrangement by instructions such as
those shown below .

Scheduled Order = RGL — AOl , 12.5; SCL-A02 , 25.0;
MXL - A03 , I; TRL - A04 , 25.0;
NRL - A05 , 200.0

The entries would then be processed and placed into the
table for executive program scheduling use.

The table structure used for scheduling can be extended
further to include additional information . Two more items might
be desirable. One of these could be the interrupt level assign-
ment which the application program is to use. This would occur
if multiple interrupts were handled by the system . The level
and their table ranking would then have to be specified .

Another condition could prevail which requires specifica-
tion . Consider that a particular program block is required to
execute on ly  when ce r t a in  condi t ions  occur in the system . This
block is , therefore , demand dependent . No association with
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interrupts is made , nor can timing criteria be made available
for scheduling this logic. However , the program block must
still be ranked as are all other program blocks. The scheduling
table might then appear as follows :

PROGRAM BLOCK FREQUENCY

Register Logic 12.5

Sca n Logic 25.0

Matrix Logic 13

Translation Logic D

Non—Register Logic 200.0

The table reflects the level of interrupt which is to be
used for directing the matrix logic int o operation. It also
indicates that the translation logic is scheduled on a demand
basis. The top to bottom ranking criteria would still be used
in determining program execution order. An expansion of the
scheduling order instructions given to the System Generation
process could he developed to refl’ L t these additional inputs.

There are , of course , several other methods by which an
executive system can he constructed . One such method is In—Line
code scheduling. This technique pr ~ides that the placement of
the instructions used in the executive cause the scheduling
sequence to occur . That is , the logic which enables the scan
logic  to operate proceeds the logic which drives the register
logic , etc. The calling sequences are then different for each
program block within the system . For this technique , the ind i-
vidual program segments would have to he uniquely identified
and physically ordered so that t h ey could he arranged in the
correct manner .

A control structure for this type of scheduling implementa-
tion would look as:

Executive Control

Instructions for Scheduling SCL-AO1

Inst ruct ions  for  Scheduling SCL—A02

Instructions for Scheduling SCL—A03

Instructions for Scheduling SCL—A04
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Instructions for Scheduling SCL—A05

This structure provides the method for scheduling time and
demand dependent programs . As the executive begins each new
time cycle , the instructions it first executes cause it to
schedule the SCL—AOl program block , followed by SCL—A 02, etc.
Logic within each scheduling segment must address the unique
time requirements for that program block or demand conditions
if the program is so driven . A method must also be constructed
which provides interrupt control.

While this method of scheduling is perhaps some more ef-
ficient t imewise in providing transfer to the appropriate pro-
gram blocks , it suffers from being more rigid and inflexible
to changes in the scheduling order . The System Generation user
would have to be more cognizant of the physical implementation of
the executive than with the first method outlined .

4.1 .5.4 Correlation

The association of system functions to program modules
which is performed for all program blocks may take another form
when the executive logic is specified . This will depend upon
the content of the executive ; how it is put together and for
what functions it is responsible.

If the system functions are provided entirely by the appli-
cation program blocks , then the specification of required
branches needs to be associated by some other criteria . This
association was already provided if the first method of execu-
tive structure described in the preceding section is considered .

When the program execution schedule was prepared for  the
System Generation process , each program block which was to be
scheduled was explicitly stated . The System Generation process
may be made to use this data in some manner . This would be
practical if the entire executive is to be used , since no
branches were called out in that procedure.

For the situations which require the use of only portions
of the executive , a relationship will have to be specified.
This could be accomplished as shown below .

EXL-A01-A = SCL-AOl

EXL-AO1-B NRL-AOl

EXL-AOl-C = RGL-AOl

EXL-AO1-D = TRL-A01
EXL-AOl-E = MXL-AOl
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The above assignments indicate various branches of an execu-
t ive system which correspond to particular program blocks. This
would reflect program correlation rather than any system func-
t ional relationship. I t would , nevertheless , allow for the in-
clus ion o f only those portions of an executive which are required
for the system being constructed .

4.1.G Overload Condit ions

An important consideration wh ich ought to he made for any
sy s tem c o n f i g u r a t i o n  is t h a t  of processor loading. A concept of
System Generation has been outlined which allows for the inclu-
sion of pre—programmed modules into a total software system .
Bu t wh at k ind of load ing wi l l  the  processor exper ience when the
sys t em is in use?

Usually, wh en processor load ing is cons idered , the  ma in
concern is with how much work the processor can undertake before
it reaches execution saturation. In exploring this area , two
conditions are of primary concern. First , it is necessary to
know that the processor is not being overloaded , and second ,
how much load ing does occur at expected peak levels.

Before exploring how it might be possible to predict
loading data , the reasons why this is considered to be a partic-
ularly important parameter when a System Generation facility is
dev eloped should be explored .

4 . l .G .1 Historical Trends

Historically, systems were created to fill some particular
switching need . A detailed specification was provided wh~ ch
identified each function that was required during implementation .
Using the specification requirements , the system designers then
began to construct a system which fulfilled those needs.

Aside from the switching subsystems , (matrix , mat rix con-
trol , line/trunk terminations , supervision detection , special
consoles and instruments), the common control area ~as a n a l y z ed
for the task in question . Of major concern here was:

(1) Which processor could best fill t he  need s?
(2) How many processors would be required?
(3) What kinds of common control interfacing should be

utilized?

(4) How much memory is needed?

(5) In what manner should the memory he partitioned ’?

(6) What interrupt levels would be required?
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(7) In mult i—processor configurations:

( a )  What tasks should be assigned each processor?
(b) How can data be exchanged between processors?

(c) What plan should be followed for error condi—
t ions?

( 8) How sh ould the  processor sof tware  be arranged?
(9) What maintenance/diagnostic capabilities need to be

prov ided?

There were , of course , many other  cons iderat ions wh ich were
taken into account during the design of each system .

One of the key areas which was addressed , but wh ich was
most d i f f icul t  to def in it ize , was loading of the common control
subsystem , or , overload ing to be exact .  There was c e r t a i n l y
an attempt to pred ict these data , particularly when the number
of required processors was addressed . These data were usually
based upon some previous system experience , which to some de-
gree approximated the requirements of the current system under
design. When no previous system closely resembled the current
undertaking, these data were extremely difficult to predict .
The use of this process has seen some very accurate predictions ,
as well as some monumental catastrophies.

4.1.6.2 Loading Criteria

The loading of a processor is primarily dependent upon the
external demands being placed upon it. These external demands
cause sorn(, process to occur , depending upon the task involved .
In a Message Switch Application , incoming message arrival rates
and delivery requirements are the prime external demands. In
a Circuit Switch Application , call placement rates and discon-
nec t requests constitute the external demands. These external
demands can usually he predicted rather accurately, when the
environment in which the switch will operate is known . In many
cases , the specifica tion to which the system is being designed
contains this intormation. The “front—end” loading can , there-
fore , be ascertained with substantial accuracy .

But how is it possible to predict the amount of time which
the processor ’ s software will consume in handling these requests?
This is the information which is of real interest , and that which
is most elusive.

There are several contributing conditions which lead to the
consumption of processor time. A few of these are named :

(1) Overhead — that portion of the software which is re-
quired at all times , even during zero traffic condi-
t ions.
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(2) Application Program Size — the amount of logic which
needs to be executed to provide call/message handling-
this will vary according to call/message type and any
special handling required.

(3) Code Execution Repetition — the sections of software
(usually loops) which are repeatedly executed , al-
though they may be quite small.

(4) Administrative runctions — those non—message/call
handling functions which must be performed immediately,
but which do not provide service for external demands.

(5) Maintenance Functions — that logic which must be per-
formed when f a u l t  ind icat ions are rece ived . Thi s is
aside from the normal system checking which is periodi-
cally performed.

(6) Scheduling — that portion of the system which decides
the order of program execution , and wh ich itself con-
tr ibutes to the loading .

Ty p ica l ly , the loading is determ ined “after the fact” ; that
is , foll owing the completion of the software design. A number
of techniques have been applied at this point , most of which
hav e had some success in determining these data. Hopefully, the
syst em is not overloaded , but is loaded sufficiently so that
the system was not grossly over-equipped . The latter is usually
not the case .

4.1.6.3 Prediction Techniques

Returning to the topic in question now , it would be poss-
ible to continue the same process for loading predictions as was
discussed above. But this process seems very restrictive and
inadequate for the type of System Generation being pursued .

It is assumed that a System Generation facility would be
based upon evolutionary deveioprnents. Specifically, software
wh ich is initially developed forms only a base for future addi-
t i ons , and t h a t  as each addition is created , it will be included
into a resevoir of software modules. A subset of the total soft-
ware capability could then be drawn upon to satisfy some partic—
ular switching requirement .

This concept precludes the possibility of drastically
changing the system requirements. Otherwise , a completely new
iacillty would have to be constructed , invalidating that which
was already done. The systems must then be generic , so that a
gradual evolution can be maintained .

Assuming that this commonality can be achieved , considera—
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tion must be given to what methods can be constructed to pre-
dict processor loading . It will be possible to draw upon the
developed software modules and to form a viable software pack-
age. This means that hundreds of combinations of modules could
be configured and installed for some switching configuration.
It would be convenient to be able to spec i f y , throu gh the  System
Generation facility , the exact requirements for a particular
sw i t ch , provide for all of the associate d modules to be arranged
together according to some predetermined scheme , and have the
loading data automatically computed in some manner.

This seems to be a difficult goal. But one which can , per-
haps , be achieved nevertheless. Remembering that the software
was constructed of small modules , and that the ability to con-
f igure par t s  of the  sys tem together  is prov ided , all that re-
ma ins is to associate  some execut i on t ime per module and to
indicate the sequence which is to be followed . It then seems
possible to build into the ~~‘stem Generation facility, the capa-
bility to use this information for loading determination .

The first step then is to place another task upon the soft-
ware designer. That task will be to determine , on a module
basis , the time required for its execution. Since the modules
are re la t ively small , th is is no large task for each module ,
a l t h o u g h  the composite w i l l  be subs tan t ial .  If  t he  typ ical
design process is observed , in many cases the software designer
does this himself , and for his own benefit during the implementa-
tion . Much of the information is then available , although re-
quests are not often made for it. This information should be
requested at the onset of the design task .

The second step will be to define the execution sequence
which should be employed . That is , how often does each partic-
ular module execute in a specified time period .

This information is more managea le if the branches are
considered , rather than individual modules. It has already been
established that the branches can be identified , each of which
conta ins several modules. An effort should then be spent to
determine branch timing . This is only a summation of unique
module times. No doubt this effort could be performed automati-
c a l l y , since all module t imes and all branches were heretofore
defined .

With some method then , it has been possible to accumulate
t imes associated with every branch in the system . The frequency
of branch execution will then be required to determine loading
across the specified time period . It should be kept in mind
that only a selected set of branches will be utilized in this
proci’ss , specifically, those which form the software for the
c o n f i g u ra t ion  required .
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As was mentioned earlier , the prime consideration on pro-
cessor loading is to determine whether the system is overloaded .
This will undoubtedly occur at peak busy hours if at all , so that
is the loading level in which there is the most interest. This
max imum handling situation is what- has to be specified in some
manner. Th is topic is further addressed in paragraph 4.3.3.1 ,
Simulation. The details of a method are advanced to solve this
pro b lem .

1.2 SYSTEM SPECIFICATION

The System Generation facility under consideration is in-
tended to satisf y those requ irements  pecul iar to C ircu it Sw it ch
and Message S w i t c h  configurations. It is not apparent that the
same t ramework could not be used for other types of applications
as w e l l .  The key in d e t e r m i n i n g  the  approach s u i t a b i l i t y  migh t
he based upon whether evolutionary software is required for other
systems , rather than in the techniques to ach iev e th is end . I t
is expected that modifications could be introduced to provide
varianc es in requirements if they exist

The scope of this discussion , however , is in the  cons t ruc t s
of a f a c i l i t y  for switching applications. The main concern here
is with possible sys t em requirements , w it h wh ich to ta ilor the
i m p l e m e n t a t i o n . (‘~?rtain requirements address the configuration
hardware , while others address the furn -tional endeavors. Both
of these require handling by the System Generation facility.

1.2.1 Physical Configuration

The p h y s i c a l  m a k e — u p  of  the system will have to be speci-
fied for each software system which is to be prepared by the
System Generation process. In order to do th is , a base of hard-
ware elements which can be drawn Upon has to be specified . From
this base , a subset can then be drawn , which will specif y an
exac t hardware configuration to be used for constructing an oper-
a t i ona l  system .

The primary purpose in constructing the hardware configur-
ation is to enable the System Gen era t ion process to ver if y tha t
the proposed hardware meets all of the funct ional capabilities
which  i t is to unde r t ake . A cor re la t ion , the r e fo r e , w i l l  be
performed . This correlation is considered in detail in paragraph
4.2.3. This information is used by the System Generation process
when the required capabilities are being assembled .

The list below reflects the kinds of hardware elements
wh ich would be used during this process. It consists of elements
which relate to switching hardware modules and those which are in-
cluded within the common control subsystem .
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Switching Dependent Elements

(I) Number of line terminations — will specify the
maximum capacity which the system is expected to
handle.

(2) Type of line terminations — will specify the kinds
of line term inations which can exist in the
system .

(3) Number of trunk terminations.

(4) Type of trunk term inations.

(5) Number of register terminations - will specify
the maximum number of receiver/sender units which
the system can handle.

(6) Type of registers — will specify the individual
kinds of registers which can be used in the
sys tem .

(7) Conference bridges — will specify the type , size
and number of bridges allowed in the system .

(8) Matrix interfaces - depending upon the matrix and
associated control , this will specify the inter-
face which is to be handled with that subsystem .

(9) Special terminations - will specify types and
maximum numbers of terminations , such as:

(a) Recording

(b) Paging

(c) Inter—matrix

(d) Encryption Modules

(e) Echo Suppressors

(10) Attendant positions — will specify the number and
type of special position equipment.

(11) I/O channel characteristics — will specif y unique
qualities of the I/O subsystem itself.

Common Control Dependent Elements

(1) Communications Processor Units — the number of
CPU ’s which can be configured within the system .
This will include the maximum number of CPU mem-
bers , if a compatible family of CPU ’s exists.

(2) CPU Arrangements - the physical configuration
which will be applied when more than one CPU is
required .
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(3) Memory Configuration & Sizes — the plan which is
to be used for memory assignment , and the amount
of such memory .

(4) Peripheral Units — will specify for each type of
unit the number , capacity, speed , etc. , which can
exist.

(a) Disc Units

(b) Tape Units

(c) Printer Units

(d) VDU Units

The lists given above are only a sample of that actually
handled by the System Generation facility. It is expected that
several dozen such entries would be made a part of the hardware
base. It is further assumed that there would exist no upper
limit for this base, and that , as the system evolved , items
could be added or deleted as necessary.

4.2.2 Funct ional Configuration

There would be another list constructed and input to the
System Generat ion facility. This list would include all system
capabilities which are possible to be handled . This list is the
same as was used in the correlation process previously mentioned .
In that process , the software logic as it satisfied unique system
requirements was pulled together. This list will also be used
to correlate those same functional requirements to the physical
configuration of the system . All aspects of the total system ,
both hardware and software , will therefore have been considered .

This section serves to identify certain functional capa-
bilities which are expected to be implemented with a Circuit or
Message Switch environment. Again , this is not a comprehensive
list , but one which could be used as a base on which further
capabilities could be added .

Functional Capabilities

(1) Numbering Plan — the address dialing formats which
may be called upon for use. This would normally
identify seven and ten digit plans which specify
area and office address codes and directory numbers.

(2) Trunk Group Arrangements — the manner in which trunk
t e rmina t ions  are grouped for  outgoing route selec-
tion , and for incoming traffic handling . Maximum
numbers per group would be given here , as well as
al lowable sizes w i t h i n  a group.

(3) Traffic Collection Procers — the activity which
accumulates various call/message statistical data
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during on—line operation . This category would in-
clude many subsets of individual system capabilities ,
each of which could be independently specified .

(-1 ) Precedence Level Handling - the assignment of prior-
ities by which calls/messages are to be handled.
The number of levels possible and some criteria by
which they are to he processed would be given .

(5) Conferericing Types - the various types of confer—
en cing available within the system would be called
out. This would include pre—set , broadcast , pro-
gressive and meet-me and any variations allowable.

(6) Signaling Requirements - this would specify every
type of system signaling which is possible such as
dial pulse , DTMF , MF , MF Confirmation , etc.

(7) Encrypted Call Types — this class would call out
unique characteristics for logic which handled
secure call/message placement .

(8) Extended Call Features - this section would specify
all unique variations of call placement , including :

(a) Direct Access

(b) Abbreviated Dialing

(c) Call Forwarding

(d) Call Transfer

(e) Line Grouping

(f) Call Placement Restrictions

(g) Busy Diversion

(h) Camp-on Busy

(1) Group Hunting

(j) Remote Answer

(k) Attendant Recall

(9) Message Length — the number of characters which can
be expected to be sent for handling within one
stream .

(10) Message Block Structure - the structure of messages
themselves , in terms of field identifications , con-
tent type , and relative positioning .

(11) Routing Indicators — the characters included within
a message which are used for destination route
selection.

(12) Character Format Accommodation - the number and types
of formats which can be processed by the system .
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(13) Code Conversion Schemes - the requirements which
address the transformation of character code from
one representation into another. - , -~

(14) Format Validation — the requirements for verifying
the character placement and content type prior to
its utilization .

(15) Header Parsing - the activity which is required to
break the message data content from preceding infor-
mat ion used for process handling.

-1 .2.3 Cor re la t ion

The System Generation facility will be built to use the
physical configuration and functional configuration lists in such
a way to verify that the requirements match the actual capability.
What is envisaged , therefore , is a process which ties certain
hardware elements or subsystems to particular functional require-
ments .

It is expected that the correlation process would be a
manual effort. Each functional capability would have to be com-
pared with hardware elements within the physical configuration
list to determine related hardware necessary. This process is
sim ilar to that which was performed in associating software logic
to functional requirements. In the hardware correlation , however ,
there may not always be a matching hardware element. For in-
stance , the capability to introduce abbreviated dialing is a soft-
ware oriented imp lementation , and does not require supportive
hardware elements. Neither does the capability to provide call
forwarding privileges to certain subscribers. But the require-
ment to provide conferencing , of any type , has associated with it
both software logic and hardware elements. The latter is the
kind of correlation which is of concern at this time .

A correlation would then be made to indicate system func-
tional dependency upon hardware elements. An example is shown
below .

Function Hardware

(1) Numbering Plan — 7 digit = Line or Trunk Terminations

( 2 )  Trunk Group Arrangements  = Trunk Terminations

(3) Traffic Collection = Tape Unit

(4) Precedence Handling = None

(5) Conferencing = Conference Bridge

This kind of information would then become part of the
System Generation facility, which could be modified as system
features or equipment needs change.
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4.3 USER INTERFACE

Some considerat ion must be given towards the use of the
System Generat ion facility. Many of the tasks which will be per-
formed are built into this process and thus , are automatic.
However , it is still envisaged that the entire process should be
guided by personnel knowledgeable in the functions being per-
formed . It is imperative then that this interface is oriented
towards projected user needs in order to make an efficient and
reliable operation .

There are two areas of concern , therefore , equipment used
by operations personnel and procedures which they will follow in
controlling the process. These topics are considered in the fol-
lowing sections.

4.3.1 Equipment

The hardware which will be used for the System Generation
facility does not appear to require unusual configurations , nor
to consist of elements which are themselves unique. The task
which is to be accomplished with this facility is primarily data
processing oriented . Files from mass storage devices will be
accessed , merged with other files , and output on some suitable
media. The internal processing which occurs is expected to be
that of accepting user inputs and accessing files, where correla-
tion functions are performed , with periodic results returned to
the operations personnel .

Therefore , a system is envisaged which contains a central
processing unit , magnetic tape drives , disc units , a line printer ,
and some equipment which allows user interface with the ongoing
process. It is not apparent that a “batch” type processing opera-
tion could be utilized efficiently.

The user interface is perhaps the most important element
with this configuration . It would provide the use with inter-
active capability to initiate the process , and to control and
monitor that process while it was being performed . A CRT ter-
minal device is probably the most efficient from a user view-
point. In the interactive mode , intermediate results could be
displayed for inspection. Decisions which have to be made during
the process could be easily implemented at such a terminal. Al-
though a hard-copy output is not considered to be essential
during the process itself , it would nevertheless aid in providing
a reference during the operation.

4.3.2 The Process

I t  is now possible to explore the user procedures which
could be employed in fulfilling the final goal of the System
Generation f a c i l i ty ,  the overall process by which this is achieved ,
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the f u n c t i o n s  performed at each step , and the manual intervention
deemed necessary.

Prior to exp lo r ing  the  opera t ions  by which the user con-
trols the  system , it is necessary to gain a clearer understanding
into t he  process itself. Since the end result of the System
Generation process is a “tailor made” software system , a multitude
of software modules must be pulled together in some logical
fashion . This function cannot be done in a vacuum . In order to
do this , other elements must be defined , specifically, wh ich hard-
ware modules  w i l l  be needed to f u l f i l l  the  s ta ted  s w i t c h i n g  role
and the system functions and features which the system is required
to handle. These inpuL:~ wi ll l orm the basis by which specific
software modules will be selected .

This  process is presented p i c t o r i a l l y  in F igu re  V I — 3 — l .

The processes shown in Figure VI—3 --l will be discussed be-
fore elaborating in detail about each step .

The key item in the initial process involves the creation
of two cor re la t ion  l i s ts , one for hardware , and the other for
software. To arrive at these lists , all hardware and software
modules are matched with known system functional capabilities .
This process (Al and Bl) yields an association of modules to
capabilities. For instance , a functional capability to outpulse
MF d igits would be reflected in both the hardware and software
lists . For hardware , this would associate MF digits outpulsing
to MF sender units. The MF sender unit may also require a partic-
ular interface to the processing subsystem . This hardware module
would , therefore , also be included . The software requirements
for MF sending would likewise be reflected in terms of one or
more software branches necessary to perform that function.

It is not of concern at this time , how many modules , either
hardware or software , are necessary . Only that the correlation
reflects all that are necessary for each individual capability.

The capture of this information , allows progression to the
next  process step .

At this point , the major concern is with the grouping of
hardware modules to produce the physical equipment necessary for
a particu l ar switch configuration . The unique system require-
ments are introduced here. The matching process , A2 , combines
the hardware correlation list with those unique requirements to
specify the actual hardware to be used . This process will yield
a hardware equipment list matching the unique system requirements
specified .

A second output of the A2 process is used as additional
information in the selection of specific software branches to
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fulf ill the system requirement.

In order to select the appropr ia te  sof tware  branches , the
hardware modules subset , the unique system requirements , and the
software correlation list are all ut ilized . The hardware input
will invoke certain software modules , while the system require-
ments  w ill invoke others. These requirements will draw from the
resources of the software correlation list. The combination of
these two criteria will establish the total software system
necessary to perform the task . The end result is a group of
software and hardware modules which when assembled together , will
satisfy the switching objective.

4.3.3 User Operat ions

The individual steps within the process which lead towards
the intended result will be considered .

The functional capabilities list is generated by personnel
who are cognizant of all capabilities existing , both hardware and
software. This is oriented towards systems functions , and may ,
there f ore , be l ikened to a spec if icat ion def in ing all  possible
attributes that a system might be expected to handle. Except in
t h i s  case , t he  equipment  does exis t  and the  so f tware  has been
developed to produce any of the  s ta ted requ i rements .

The acquisition of these lists has been outlined in pre-
vious sections. This information is entered into the system ,
providing the primary data base from which system subsets will be
drawn . The user of the System Generat ion facility can , therefore ,
draw upon any of the specified capabilities contained within this
da ta  base.

It will also he a user function to update this information
as new and proven hardware and software modules are made avail-
able. He would be able to insert or delete to the list as the
system evolves. This is a vital function since it is expected
that the System Generation facility will take upon a larger and
larger role in equipment configuration as time progresses. New
techniques will be developed which extend the switching capa-
bilities beyond those originally introduced.

The next step will be the introduction of those system re-
quirements which the switch is expected to perform in a particular
environment . The user would key these into the system as a sep-
arate process. This is similar to preparing a specification for
off—the—shelf pro curement.

There are many ~tpproaches which could be considered here.One is simply a random input of capabilities which the system is
expected to handle. It would not matter which item was first
introduced since the system would be expected to validate the
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inputs and choose the appropriate equipment after all entries
were mad e. h owever , the random input lacks any semblance of
order , and thus , would most likely require further information
or correct ions in subsequent entry procedures.

I t  seems more p laus ib le  tha t  some order of e n t r y  should
be considered . One feasible approach would take the form of a
quest ion and answer format , in which the system queried the user
in suc cessive steps. If  th is was done , the entr ies would be con-
sidered sectionalized . For instance , all en t r ies about the  end
user equipment could be introduced first , followed by superv i-
sion procedures , spec ial consoles , etc.  Us ing th is approach ,
the input process would be simplified by progressively displaying
all possible end user equipment available , all superv ision pro-
cedures , all special consoles , etc. The user would select those
wh ich matched h is spec if i c  requi rements  and would en ter the
number of each that was needed . The physical arrangement of the
equipment could likewise be specified if necessary.

At some point in this process , the user begins to specify
the equipment which is commonly shared and traffic dependent .
Two possibilities exist here. First , it might be initially im-
practical to automate traffic calculations into the System Gen-
erat ion facility. The user would , the re fore , use some predeter-
m ined knowledge in specifying the numbers of these units. The
system would be equipped with whatever the user specified .

However , after some period of time , it might be deemed
more desirable to include within the System Generation facility
some traffic calculations which provided aid to the user in
specifying numbers for traffic dependent equipment modules. Based
upon the expected traffic , the system would call out f~~r a cal-
culated number of modules . The user would be able to modif y these
numbers based upon some add itional information .

For the above process , the matching process , A2 , would con-
tinue for the hardware throughout all of the user/system inter-
action. At the completion of the hardware related phase , a com-
plete hardware equipment list would be printed .

Although this procedure outlined for hardware specifica-
tion need not necessarily be made a part of the System Generation
facility, some manual process would otherwise have to be sub-
stituted . This is possible , but the penalty is that the specifi-
cation of the hardware and software would be done under separate
processes , with the possibility of inconsistencies being intro-
duced.

It would be valid , of course , to eliminate the hardware
specification procedure in the event that no changes to the equip-
ment configuration were necessary. This situation would exist if
the same hardware was applied in a different manner through soft-
ware reconfiguration only. The System Generation concept should
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no t pr ec lude t hi s poss ib i l it y .

The next process which the user would be u n d e r t a k ing is
the specification of software capabilities. Those functions
which tie the entire system together , to provide the end r e s u l t ,
need to be introduced . This process parallels that which was
undertaken for the hardware modules. In fact , many of the system
functions , which required modules of hardware , will require
cou n t e r p a r t s  of so f twa re .

Some e labora t ion  is needed at this point. It can be said
that the mere introduction of unique system requirements is not
sufficient for the specification of software. The input from the
hardware specification will describe the actual equipment used .
These inputs are used to invoke appropriate software modules such
as particular supervision procedures , matrix interface procedures ,
and particular peripheral equipment software interface logic.
These are necessary so that the correct equipment interface pro-
cedures are included in the end product .

The specification impact from the System Generation user
for unique system functions does not address equipment character-
istics , but rather those user functions which the system is being
constructed to provide. Therefore , the kinds of inputs which are
considered here are features oriented , such as abbrev iated d ial ing
conference privileges , numbering plan , message characteristics
and formats , and timing characteristics.

It is expected that there will be many system functions
available from which to draw . It would seem logical to imp lement
some order of entry which blended with other organizat ional pro-
cedures in which the System Generation facility is used . It
should be , however , comprehensive and simplified to enable the
user to specif y easily the desired system .

Having entered all of the system functional capabilities ,
and effecting the acquisition of the appropriate software modules ,
the final user operation addresses the configuration of these
modules. Some order already does exist by virtue of the manner
in which the branches were originally constructed . This was
covered in previous sections. What is important here is intro-
ducing execution cycles which the software is expected to main-
tain.

The executive program is the chief means by which sched-
ul ing will occur. A possible method for assigning execution
cycles , introduced previously, effects this order assignment.
The user would be interested in ascertaining whether the configur-
ation he has produced is effective in meeting the traffic condi-
tions which the system is expected to handle . It would be pos-
sible for instance , to select the appropriate software modules ,
but to arrange them in several different configurations. Some of
these configurations may not be optimum in meeting the known re-
quirements .
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W h a t  wou ld  be advan t a geous is for  the  Sy stem Genera t ion
facility to verify in some manner the  th roughpu t  c a p a b i l i t y .
Sever al configurations could be simulated under the direction of
t he  System Generation user and a selection made which best fits
t h e  req u i r e m e n t s .  This c a p a b i l i t y  is addressed in the  next  see-
ion .

On e add itio nal  task wh ich the System Genera ti on user would
he concerned with is overlay software logic. It may be desirable
for ce rtain segments to be r o l l e d — i n  at p a r t i c u l a r  t imes rather
th an being permanently resident in main memory . A knowledge of
th e s o f t w a r e  system o rgan iza t i on  would need to be known in some
detail to allow a workable system arranged with overlay logic.

The user would  need to know , for  ins tance , wh ich so f tware
blocks are capable of being dynamically allocated to storage
space , and the size of each block which could be so handled.

~\nother important consideration in allowing or disallowing over—
l ay procedures concerns what penalities , if a n y ,  would be in-
cu rred from th is imp l ementa t ion.

Each block which provided overlay techniques to be applied
would have to be tagged with some conditional information speci-
f y ing cr iter ia ment ioned above. The System Generat ion user would
then make a dec ision as to the advisability of each block in
ques t ion .

4 . 3 . 3 .1  S i m u l a t i o n

Many kinds of simulations exist which perform various roies
in sys tems des ign and test . Regard ing the Sys t em Gen era ti on
facility, it is not the concern with attempts to verify correct-
ness in logic or code. It is presumed that prior to the inclu-

• sion of any software branch into the software branches list that
the se types of verfiications would have been made . The insertion
of f a u l ty programs is , therefore , not an itcipated.

The primary concern is with the effectiveness of the system
put together in this facility. Specifically, the effectiven ess
in terms of throughput. This must be equated to individual pro-
gram execution times .

To accomplish this end , further information must he gained
abou t the execution times of individual branches which con stitute
a program . This would be a composite of all execution t imes of
the modules which composed a branch. The problem which surfaces
here is two—fo1d . First , as noted previously, the programmer
would need to calculate approximate times per module. This in-
formation would be collected and entered at the branch level.
This requirement does not become particularly difficult when it
is considered that individual modules are relatively small. Each
module is performing only a small role in the t o tal system task.
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Follow ing the module cod ing, it is not for eseen that  much e f f ort
would need to be expended in determ in ing the execut ion t ime.

The second problem is perhaps more difficult and time con-
sum ing . Cons ider tha t  f or any part icular branch tha t  several
modules ex ist , an d tha t  onl y certa in modules may need to execute
when that  branch is entered at a pa r t i cu lar t ime. Some means must
then be determined to capture the normal execution time per
branch.

Since the ma in concern is with  approx imat ions , as stated be-
fo re , th is program can be simp l i f ied. It will take some e f f o rt ,
but the pay—of f can be significant . Normally , each branch can
be determined to have an execution sequence which causes minimal
execution times and also maximum execution times. These can be
determined by inspection and recorded . It is also conce ivable
that the  path through a branch may also have a normal execut ion
route , which is either one of the two extremes , or somewhat in
between the two . These t imes would represent var iances in
handl ing the function which the branch was designed to perform .
That information can then be captured.

Th2refore , three distinct branch execution times can be ac-
cumulated ; best case , normal case , and worst case. These times
are th en associated wit h each branch p laced into the  software
branches list . The System Generat ion f a c i l i t y  could then make
use of th is info rmat ion in an automated wa y to calcula te  the as-
sociated execution times of a specified software configuration.
This is possible since all branches are known , all things per
branch are recorde’i, and th-~ configuration is defined . A summa-
t ion of these t imes across some de fined inte rva l  will del iver
approximate loading values. The calculations could be made for
all  three  spec if ied branch t imes , or as a mix of combinations of
those times based on some probability of occurrence.

A structure which reflects the timing of three branches is
shown below .
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PROGRAN (500-100-25)
BLOCK A

(250—300—48 ) (200—200—200) (400—450—520)

BRANCH A BRANCH J BRANCH C

I I _ _ _ _ _ _

I ~~ I I I I
I I I I L I I I I I I

I I~~1~ I~~ I I~~
Consider ing Branch A , the least execution time taken by the

logic is 250 us, the normal use is 300 us , and the maximum time
is 480 us. Note that Branch B timing remains the same for all
three cases.

The next step in determining processor loading concerns the
frequency of execution of each branch of the system . It must be
known how often a particular branch is entered in order to compute
the total amount of processing time across some predefined inter-
val of real time.

Fortunately, some of the information necessary to predict
this has already been generated. Recall that in the discussion
of the Executive Control , the program block frequency needed to
he specified . This information can now be used by the simulation
process to calculate execution frequency. This works well , ex-
cept for program blocks which are either demand or interrupt
driven . For these blocks , it is necessary to spec i fy ,  for simu-
lat ion purposes , the frequency with which they will operate.
This will require a judgement by the system designer. The method
advanced for branch timing , giving three values , could be made
use of here as wel l .  A knowledge of the system is important  in
order to ascertain the most realistic procedure to follow . This
information is shown on the previous diagram . It indicates that
Program Block A is executed normally every 100 milliseconds ; that
at least it is executed every 500 milliseconds and no more fre-
quently than every 2.5 milliseconds .

This program blcck might represent one which is normally
driven by demands or interrupts , but for simulation purposes , has
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been tagged with this execution frequency data.

It may be obv ious at this point that no mention has been
made concern ing the traffic levels which the system will be ex-
pected to handle. Until now , the main concern has been with the
logic flow within the software which supposedly is driven by some
external stimuli. That external stimuli is either messages re-
ceived and del ivered or call placement/releases handled . The
quantity of these occurrences has a significant impact upon the
system loading. Therefcre , they must be considered to gain a
clearer projection of th i s  t imin g .

Traffic information must be introduced into the system at
the branch level. This will either come from m anual entries of
the user , or through  the automated t r a f f i c  data mentioned earlier
regarding quantity of common equipment modules. The method of
input  is not important here. How this traffic information is
utilized is the important issue. An example can best describe
the procedure.

Assume that the system being constructed is a circuit switch
appl ication for 1000 subscriber terminations. Assume further
that the system also has assigned to it 300 trunk term inations.
The effect of the demands placed upon the software needs to be
calculated to form a true loading picture.

One method to achieve this is to isolate the areas which are
directly affected by call placements. These will include the
front—end scanning logic , register logic including address col-
lection and sending , address translations , and special features
logic employed in handling certain calls. Other areas will have
little or no increased loading when traffic levels are increased
or decreased .

The determinat ion of affected areas is not a particularly
difficult task. This should be accomplished by the system de-
signers , who are most cognizant of the applicable areas. Having
isolated these areas, it is possible to assign weighting para-
meters to them along with the conditions by which these parameters
are adjusted . For instance , a branch or branches which are af-
fected by seizure requests would be assigned weighting values
dependent upon traffic. Idle conditions will force this para-
meter to zero . Half—load traffic , defined as “N” number of
seizures per second would provide a second value. Full loading ,
“2N” would force the parameter to a higher value. Intermediate
values could likewise be calculated .

The parameters are then used to modify the individual branch
timings calculated before. Some educated judgement is necessary
at this step to provide a realistic estimate of the parameter
usage. It may not be realistic , For instance , to double the t ime
of scanning when the system is fully loaded . It may only be
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necessary to app ly  a weighted  value of , say 1.3. The rationale
for this lies within the scanning design itself. It is con-
ceivab le tha t  the majority of the scan logic occurs independent
of traffic load , as was shown in Section 2, paragraph 2.4.3.2;
and t hus , only small additional amounts of processing are re-
quired to handl e new seizures.

Another example would be in the access logic necessary to
operate the matrix. In thi -~ case , the load ing might be sub-
stant ially increased by call placement activity. Assuming that
each call requires “N” accesses as an average to the matrix ,
then each call will increase the loading by an equivalent
amount. Again , th is determ inat ion is des ign dependent .

The concept which has been advanced for simulation of soft-
ware loading is an attempt to approximate that which would
exis t  in the  real envi ronment . This app rox ima t ion  cou ld  be
developed in great detail so that a very accurate pici ure is
de te rmined .

No matter what level is attained , the end result would be
to give the System Generation user the opportunity to configure
the system in different manners to predict throughput perfor-
mance. Using several simulation runs , the one wh ich ind icated
the best overall performance for known criteria could then be
chosen . The system would then produce the necessary output for
system loading and corresponding documentation.

4 . 4  CONCLUSIONS

The concepts presented for the development of a System
Generat ion facility provide a technique which , if implemented ,
would allow for the re—use of software , in t o t a l  or in pa r t ,
for varying configurations and functional requirements of
switching system s. No a t t empt  has been made to est imate  the
e f f o r t  needed to he expended in achieving t h i s  goal .  This esti-
mate must be based upon a known configuration of hardware and
sof tware in order to be meanin g fu l , and upon the degree of im-
plementation which would initially be undertaken . It is not
suggested that the initial attempt at System Generation should
encompass the entire spectrum of the generation process.
Rather , a more realistic approach would seem in order; one in
which various portions of the technique were applied , and built
upon in successive stages. However , early planning must be
made for evolution into the total system .

A co ncerted effort must then be made at the onset of a
system des ign  in order to achieve  a flexible and workable
System Generation process. Planning must be introduced at an
early stage o.~ system development. One cannot reasonably ex-
pect that a system , already developed and in use, could be
accommodated in the rmanner outlined within this report. The
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p o s s i b i l i ty  to i n c l u d e  c e r t a i n  por t ions  migh t  be poss ib le  a f t e r
t he f a c t , but a total system would necessitate a substantial
effort which most likely would negate any subsequent pay-off.

Cruc ial areas which need to be considered at an early
stage are :

• System Configuration

The e lements  which  compose the hardware modules , the i r
interconnectivity, and modu la r i t y  need to be un ique ly
specified . A rigid system which does not afford flexi-
bility in expansion or contraction , nor additional add—
on equ ipment , would not seem to be a reasonabl e system
for which to construct a System Generation facility.
Therefore , the ideal system would allow adaptability
to changing configurational requirements.

• Functional Capability

It can reasonably be expected that the funct ions which
the system will be expected to perform will vary ex-
tensively from one configuration to another . Multi—
plicity of carbon copy systems do not require special-
ized configuration procedures and may be reproduced
easily by other means.

• Software Structure

The generally accepted procedures of Structured Program-
m ing must be adhered to for consistency of design and
modularity. The failure to apply standard practices
will yield an unworkable or burdensome task for the user
to manipulate.

• Identification and Correlation

The procedures outlined in this report need to be ad-
dressed during the software implementation to gain the
input material for the process. Although this informa-
tion could be derived after the design , it can be ex-
pected that an appreciable amount of effort would be
needed if this task is def rred. The availability of
knowledgeable personnel coul ’ then pose a serious pro-
b 1 em.

• System Generation Software

The m a n n e r  in which  t h i s  s o f t w a r e  is created , and the ex-
tent to which it ach ieves the  desired goal must be
carefully planned . This activity can parallel the
switching design task if the entire system is well
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planned in advance. Configurations of data which will
be available , e~-.pected operational procedures , and out-
put from the process , must be specified in suffic ient
de ta i l  to provide the  intended resu l t .

While the concepts and techniques present within this re-
port should provide a basis on which a System neration facility
can be constructed , they are considered to be only a basis for
which further exploration of the topic may be made . The frame-
work has been provided in which further investigations may be
pursued .

VI—79



PREFACE

Th.~ t o.eume , voi! am e I/li con,~L~.t~ o~ ~- v e  app end .cce6 .

A pp endi.x I - Contai.no a de4e’o~p t~Lon o~ va1m~Loa~6 c 4 ~S~Lca.~pko ce44o/r. akchi~~~e~take4 .

App end~Lx ii - Conta i..n4 an ana óLo o~ the advan .tage4 and
d~L4advantag e4 o~ t~LtLz.~ing Content Add~&e44-ab’e. Memo/oLe4 ~Ln C~L’ic.uLt and M cus4ag e
S wA.tch~Lng app UcatLon4 .

App en d .L x Ill - Co n t a~Ln~ a Gto44an.y o~ Te~’tm.~ and Ackon~jm~sa4ed thn.o u.g hoa t the  ~Lnci n ep o & t .

App end~Lx IV - ContaLn4 a B~ b!~ ogn.aph~i o~ aktA cLe~ and
)c.e~ ekenc. e boo fz4 wh~Leh we&e u4e d  th ’moaghoa .t
the. c o af l 4 e  o~ the. ~tady.

A pp endi~ V - Conta~Ln4 a 4ammaky o~5 C~imca~t Sc&u.tch and
Me. t~4age Switch ~unc~tiona~ bkea~dowvi~ and
ccteca~a.t~on4.

Al-I



APPENDIX I

CLASS I CAL PROCESSOR ARCHITECTURES

In order to determine the Communication Processor System
which  is economical ly best suited to serve the previously de-
scribed applications functions , the following plan was
adopted:

(1) The applications functions are discussed as if they are
to be implemented on a single sequential processor (uni-
processor approach). Although it soon becomes apparent
t ha t  th is  approach is not the pract ical  solution for
the p roblem , it offers a means to normalize the evalua-
t i o n  of other  processor system architectures. The
app roach also lends familiarity, log ical sim p l i c it y ,
and provides a wealth of historical emperical data.

(2) The necessity of increasing throughput leads to a
search for “Parallelism” , i.e., by processing several
functions concurrently , or by processing the same
function for several events (calls , messages) concur-
rently.

(3) The application functions are analyzed to determine
if an advantage may be gained by use of an associative
(content addressable) memory , and if further (speed)
advantage may be gained by associative processing.

(4) The results of “optimizing” each appl icat ion func t ion
with respect to several processor unit architectures
wil1 then be weighted and merged to evolve the recom-
mended processor system architecture (Volume IV of this
report) and the resulting processor unit architectures.

In order to avoid confusion between the terms processor
unit and processor ~y~ tem , the following is offered.

A group of processing elements are considered a pro-
cessor unit if they execute machine level commands
from a single contro l device in synchronism .

A group of processing elements are considered a pro-
cessor system if they contain separate control units ,
and execute machine level commands (relatively) asyn—
chronously. Note that a common “Master” control unit
can issue commands to several processing elements each
having its separate control unit. This constitutes a
system by our terminology .
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Fundament al Processor Unit Architectures

It is pertinent to describe several popular processor
un i t ty pes and br ie f l y  desc rib e the  propert ies of a process ing
fun ction which best exploits the advantages (or disadvantages)
of  each. “ A d v a n t a g e s ” and “ d i s a d v a n t a g e s” are r e l a t i v e  to the
u n ip r o c es s or  which has been adopted as a “normal izer ” .

Un iprocessor Unit Archit ecture

Figure A I—l shows a block diagram of the classical “general
purpose” machine. Only one stream of instructions is operating
on one set of data at a time . The fundamental means of in-
crea sing t h r ough put is to reduce execut ion and memory cyc le
times . The limitations are therefore fundamental .

Two embell ishments  wh ich have been ut il ized in the  past to
i n crease th r oughput  are “InsLru ction Look—Ahead” and “M u l t ip le
Mach ine Sta tes or Regis ter  Set s” .

“Instruct ion Look—Ahead” is a means of having the “nex t ”
inst ruc tio n ready for  execut ion immed ia te ly  on the  complet ion
o f the p rev ious ins t ruc t i on , thereby complet ing two (or more)
operations in one memory cycle time . Full exploitation of this
concept  r e q u i r e s  an i n c r e a s e  in t he  number  of wires to t h e
memory unit such that multiple instructions are accessed during
One memory cycle time .

“ M u l t i p l e  M a c h i n e  S ta t e s  or Regis te r  Sets ” is a means of
saving storage cycles in the case of t r a n s f e r  of m a c h i n e  con-
trol from one program to another. This construct can increase
th rou ghput if t h e  na ture of the  process requ ires a sign if icant
amount of jumping from one (sub) program to another . In the
case of fai r l y  “lon g” rout ines  wi th in one pro gram , the amount
o f time saved (on a long time average) by eliminating the
stora~.te cycle  overhead is i n s ig n i f i c a n t ;  in w h i c h  case t h e  o n l y
‘ advantage ” offered by multiple registers is a possible program-
ming convenience.

“ALU Pipelining ” (Unit) Architecture

‘ALU Pipelining ” , shown in Figure AI—2 is a means by
which “comp l ex ” instructions may be mechanized to reduce ex—
exution t ime . The method is especially useful in floating
point ar ithmetic where a large amount of data must undergo the
same processing. One special ALU (Arithmetic Logic Unit) is
used solely to a1ign exponents , another to multiply, another to
add , etc. The instruction ADD from the control unit enables one
set of ALU ’s and bypasses others , while the instruction MULTIPLY
would enable a different set of ALU ’s as required . The advan--
tage of this mechanism is lost if only logic al manipulations
are required . Logical operations are “simple ” and can be
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mechanized efficiently in one “stage” o f ALU . “Com p lex ” oper-
ations r e q u i r i n g  seve ra l execu t ion  cycles  can g a i n  a speed
advantage by this construct , but  they must be executed often
(st a tisti c ally ) i f  “ALU pip elining ” is to  he economicall y jus-
tifiabl e . Other benef its of an ALU pipeline organ—
izat ion may Ia- gained if it is possible to establish multip l e
data paths through the ALU set with a minimum of bottlenecks
(determined by simultaneous contention of one special ALU).

(Note: The term pipelining ” was adopted from an analogy l o
the operation of a pipe l in e . The analogy and the term have also
been applied to resource allocation in a multiple processor -system . “MU pipelining ’ is the only context in which we use the
term . )

Pa rallel Array (Unit) Architecture

The Parrallel Array Unit Ar chitecture , shown in Figure A l—
3 is especiall y suited for applications where a large amount of
data can be processed simultaneously. The processes must be
(rela t I vely) independent hut similar . Each act ive Processing
E l e m e n t , PE , is synchronously performing the same operation on
its particular data stream . Any PE can be activated or de-
activated independently, but if it is active , it is performing
the same operat ion as all the other PE ‘s.

In order to exploit this type of processing, t he  da ta mu st
be ‘ s nchronizable to the process , i.e., the instruction stream
sequence is dat a indepen dent , and the data must be ready on
demand. This implit s that the data is not real—time , but is
resident at the time of processing. (Note the difference to
cases where the data is rea l—time , and the  pro gram sequence is
the dependent variable.)

This  t y p e  of u n i t  a r ch i t e c t u r e  is e s p e c i a l l y  s u i t e d  f o r
(Mathematical) Matrix operations , l inear programming, table
look—up operations , digital filter design , sensor data pro-
cessing and pattern recognition .

A s s o c i a t i v e  A r r a y  U n i t  A r ” h i t e c t u r e

The Associative Array Unit Architecture , shown in Figure
A I—4 prov ides a means of exploiting the properties of an
A ssociative (or Content Addressable) Memory .

( 1)  Word S l ice  — An Assoc i at i ye Memory may be accessed by
a word address , causing the data at t hat address to
appear cm t h e  o u t p u t  l i n e s . (Th i s  is I h e  s ta n d a r d
mode for conventional RAM memori es)

(2) Bit. Sli ce — An Assoc I at I ye Memory may he accessed by a
hit position address , causing the c o n t e n t s  of each bit
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